Long Term Future Fund: April 2019 grant decisions

https://www.lesswrong.com/posts/t3t9osBsmwkajWz5Y/long-term-future-fund-april-2019-grant-decisions

Link post Contents

Grant Recipients

Each grant recipient is followed by the size of the grant and their one-sentence description of their project.

Grant Rationale

Here we explain the purpose for each grant and summarize our reasoning behind their recommendation. Each summary is written by the fund member who was most excited about recommending the relevant grant (plus some constraints on who had time available to write up their reasoning). These differ a lot in length, based on how much available time the different fund members had to explain their reasoning.

Writeups by Helen Toner

Alex Lintz ($17,900)

A two-day, career-focused workshop to inform and connect European EAs interested in AI governance Alex Lintz and some collaborators from EA Zürich proposed organizing a two-day workshop for EAs interested in AI governance careers, with the goals of giving participants background on the space, offering career advice, and building community. We agree with their assessment that this space is immature and hard to enter, and believe their suggested plan for the workshop looks like a promising way to help participants orient to careers in AI governance.

Writeups by Matt Wage

Tessa Alexanian ($26,250)

A biorisk summit for the Bay Area biotech industry, DIY biologists, and biosecurity researchers We are funding Tessa Alexanian to run a one day biosecurity summit, immediately following the SynBioBeta industry conference. We have also put Tessa in touch with some experienced people in the biosecurity space who we think can help make sure the event goes well.

Shahar Avin ($40,000)

Scaling up scenario role-play for AI strategy research and training; improving the pipeline for new researchers We are funding Shahar Avin to help him hire an academic research assistant and for other miscellaneous research expenses. We think positively of Shahar’s past work (for example this report), and multiple people we trust recommended that we fund him.

Lucius Caviola ($50,000)

Conducting postdoctoral research at Harvard on the psychology of EA/​long-termism We are funding Lucius Caviola for a 2-year postdoc at Harvard working with Professor Joshua Greene. Lucius plans to study the psychology of effective altruism and long-termism, and an EA academic we trust had a positive impression of him. We are splitting the cost of this project with the EA Meta Fund because some of Caviola’s research (on effective altruism) is a better fit for the Meta Fund while some of his research (on long-termism) is a better fit for our fund.

Ought ($50,000)

We funded Ought in our last round of grants, and our reasoning for funding them in this round is largely the same. Additionally, we wanted to help Ought diversify its funding base because it currently receives almost all its funding from only two sources and is trying to change that. Our comments from last round: Ought is a nonprofit aiming to implement AI alignment concepts in real-world applications. We believe that Ought’s approach is interesting and worth trying, and that they have a strong team. Our understanding is that hiring is currently more of a bottleneck for them than funding, so we are only making a small grant. Part of the aim of the grant is to show Ought as an example of the type of organization we are likely to fund in the future.

Writeups by Alex Zhu

Nikhil Kunapuli ($30,000)

A study of safe exploration and robustness to distributional shift in biological complex systems Nikhil Kunapuli is doing independent deconfusion research for AI safety. His approach is to develop better foundational understandings of various concepts in AI safety, like safe exploration and robustness to distributional shift, by exploring these concepts in complex systems science and theoretical biology, domains outside of machine learning for which these concepts are also applicable. To quote an illustrative passage from his application: When an organism within an ecosystem develops a unique mutation, one of several things can happen. At the level of the organism, the mutation can either be neutral in terms of fitness, maladaptive and leading to reduced reproductive success and/​or death, or adaptive. For an adaptive mutation, the upgraded fitness of the organism will change the fitness landscape for all other organisms within the ecosystem, and in response, the structure of the ecosystem will either be perturbed into a new attractor state or destabilized entirely, leading to ecosystem collapse. Remarkably, most mutations do not kill their hosts, and most mutations also do not lead to ecosystem collapse. This is actually surprising when one considers the staggering complexity present within a single genome (tens of thousands of genes deeply intertwined through genomic regulatory networks) as well as an ecosystem (billions of organisms occupying unique niches and constantly co-evolving). One would naïvely think that a system so complex must be highly sensitive to change, and yet these systems are actually surprisingly robust. Nature somehow figured out a way to create robust organisms that could respond to and function in a shifting environment, as well as how to build ecosystems in which organisms could be free to safely explore their adjacent possible new forms without killing all other species. Nikhil spent a summer doing research for the New England Complex Systems Institute. He also spent 6 months as the cofounder and COO of an AI hardware startup, which he left because he decided that direct work on AI safety is more urgent and important. I recommended that we fund Nikhil because I think Nikhil’s research directions are promising, and because I personally learn a lot about AI safety every time I talk with him. The quality of his work will be assessed by researchers at MIRI.

Anand Srinivasan ($30,000)

Formalizing perceptual complexity with application to safe intelligence amplification Anand Srinivasan is doing independent deconfusion research for AI safety. His angle of attack is to develop a framework that will allow researchers to make provable claims about what specific AI systems can and cannot do, based off of factors like their architectures and their training processes. For example, AlphaGo can "only have thoughts" about patterns on Go boards and lookaheads, which aren’t expressive enough to encode thoughts about malicious takeover. AI researchers can build safe and extremely powerful AI systems by relying on intuitive judgments of their capabilities. However, these intuitions are non-rigorous and prone to error, especially since powerful optimization processes can generate solutions that are totally novel and unexpected to humans. Furthermore, competitive dynamics will incentivize rationalization about which AI systems are safe to deploy. Under fast takeoff assumptions, a single rogue AI system could lead to human extinction, making it particularly unreliable for us to rely exclusively on intuitive judgments about which AI systems are safe. Anand’s goal is to develop a framework that formalizes these intuitions well enough to permit future AI researchers to make provable claims about what future AI systems can and can’t internally represent. Anand was the CTO of an enterprise software company that he cofounded with me, where he managed a six-person engineering team for two years. Upon leaving the company, he decided to refocus his efforts toward building safe AGI. Before dropping out of MIT, Anand worked on Ising models for fast image classification and fuzzy manifold learning (which was later independently published as a top paper at NIPS). I recommended that we fund Anand because I think Anand’s research directions are promising, and I personally learn a lot about AI safety every time I talk with him. The quality of Anand’s work will be assessed by researchers at MIRI.

David Girardo ($30,000)

A research agenda rigorously connecting the internal and external views of value synthesis David Girardo is doing independent deconfusion research for AI safety. His angle of attack is to elucidate the ontological primitives for representing hierarchical abstractions, drawing from his experience with type theory, category theory, differential geometry, and theoretical neuroscience. I decided to fund David because I think David’s research directions are very promising, and because I personally learn a lot about AI safety every time I talk with him. Tsvi Benson-Tilsen, a MIRI researcher, has also recommended that David get funding. The quality of David’s work will be assessed by researchers at MIRI.

Writeups by Oliver Habryka

I have a broad sense that funders in EA tend to give little feedback to organizations they are funding, as well as organizations that they explicitly decided not to fund (usually due to time constraints). So in my writeups below I tried to be as transparent as possible in explaining the real reasons for what caused me to believe a grant was a good idea, what my biggest hesitations are, and took a lot of opportunities to explain background models of mine that might help others get better at understanding my future decisions in this space. For some of the grants below, I think there exist more publicly defensible (or easier to understand) arguments for the grants that I recommended. However I tried to explain the actual models that drove my decisions for these grants, which are often hard to put into a few paragraphs of text, and so I apologize in advance for some of the explanations below almost certainly being a bit hard to understand. Note that when I’ve written about how I hope a grant will be spent, this was in aid of clarifying my reasoning and is in no way meant as a restriction on what the grant should be spent on. The only restriction is that it should be spent on the project they applied for in some fashion, plus any further legal restrictions that CEA requires.

Mikhail Yagudin ($28,000)

Giving copies of Harry Potter and the Methods of Rationality to the winners of EGMO 2019 and IMO 2020 From the application: EA Russia has the oral agreements with IMO [International Math Olympiad] 2020 (Saint Petersburg, Russia) & EGMO [European Girls’ Mathematical Olympiad] 2019 (Kyiv, Ukraine) organizers to give HPMORs [copies of Harry Potter and the Methods of Rationality] to the medalists of the competitions. We would also be able to add an EA /​ rationality leaflet made by CFAR (I contacted Timothy Telleen-Lawton on that matter). My thoughts and reasoning My model for the impact of this grant roughly breaks down into three questions:

Alex Turner ($30,000)

Building towards a "Limited Agent Foundations" thesis on mild optimization and corrigibility From the application: I am a third-year computer science PhD student funded by a graduate teaching assistantship; to dedicate more attention to alignment research, I am applying for one or more trimesters of funding (spring term starts April 1). […] Last summer, I designed an approach to the "impact measurement" subproblem of AI safety: "what equation cleanly captures what it means for an agent to change its environment, and how do we implement it so that an impact-limited paperclip maximizer would only make a few thousand paperclips?". I believe that my approach, Attainable Utility Preservation (AUP), goes a long way towards answering both questions robustly, concluding: > By changing our perspective from "what effects on the world are ‘impactful’?" to "how can we stop agents from overfitting their environments?", a natural, satisfying definition of impact falls out. From this, we construct an impact measure with a host of desirable properties […] AUP agents seem to exhibit qualitatively different behavior […] Primarily, I aim both to output publishable material for my thesis and to think deeply about the corrigibility and mild optimization portions of MIRI’s machine learning research agenda. Although I’m excited by what AUP makes possible, I want to lay the groundwork of deep understanding for multiple alignment subproblems. I believe that this kind of clear understanding will make positive AI outcomes more likely. My thoughts and reasoning I’m excited about this because:

Orpheus Lummis ($10,000)

Upskilling in contemporary AI techniques, deep RL and AI safety, before pursuing a ML PhD From the application : Notable planned subprojects:

Tegan McCaslin ($30,000)

Conducting independent research into AI forecasting and strategy questions From the application: 1) I’d like to independently pursue research projects relevant to AI forecasting and strategy, including (but not necessarily limited to) some of the following:

While I haven’t spent the time to look into Tegan’s research in any depth, the small amount I did read looked promising. The methodology of this post is quite exciting, and her work there and on other pieces seems very thorough and detailed. That said, my brief assessment of Tegan’s work was not the reason why I recommended this grant, and if Tegan asks for a new grant in 6 months to focus on solo research, I will want to spend significantly more time reading her output and talking with her, to understand how these questions were chosen and what precise relation they have to forecasting technological progress in AI. Overall, I think Tegan is in a good place to find a valuable role in our collective X-risk reduction project, and I’d like her to have the runway to find that role.

Anthony Aguirre ($70,000)

A major expansion of the Metaculus prediction platform and its community From the application: The funds would be used to expand the Metaculus prediction platform along with its community. Metaculus.com is a fully-functional prediction platform with ~10,000 registered users and >120,000 predictions made to date on more than >1000 questions. The goals of Metaculus are:

Lauren Lee ($20,000)

Working to prevent burnout and boost productivity within the EA and X-risk communities From the application: (1) After 2 years as a CFAR instructor/​researcher, I’m currently in a 6-12 month phase of reorienting around my goals and plans. I’m requesting a grant to spend the coming year thinking about rationality and testing new projects. (2) I want to help individuals and orgs in the x-risk community orient towards and achieve their goals. (A) I want to train the skill of dependability, in myself and others. This is the skill of a) following through on commitments and b) making prosocial /​ difficult choices in the face of fear and aversion. The skill of doing the correct thing, despite going against incentive gradients, seems to be the key to virtue. One strategy I’ve used is to surround myself with people with shared values (CFAR, Bay Area) and trust the resulting incentive gradients. I now believe it is also critical to be the kind of person who can take correct action despite prevailing incentive structures. Dependability is also related to thinking clearly. Your ability to make the right decision depends on your ability to hold and be with all possible realities, especially painful and aversive ones. Most people have blindspots that actively prevent this. I have some leads on how to train this skill, and I’d like both time and money to test them. (B) Thinking clearly about AI risk Most people’s decisions in the Bay Area AI risk community seem model-free. They themselves don’t have models of why they’re doing what they’re doing; they’re relying on other people "with models" to tell them what to do and why. I’ve personally carried around such premises. I want to help people explore where their ‘placeholder premises’ are and create safety for looking at their true motivations, and then help them become more internally and externally aligned. (C) Burnout Speaking of "not getting very far." My personal opinion is that most ex-CFAR employees left because of burnout; I’ve written what I’ve learned here, see top 2 comments: [https://​​forum.effectivealtruism.org/​​posts/​​NDszJWMsdLCB4MNoy/​​burnout-what-is-it-and-how-to-treat-it#87ue5WzwaFDbGpcA7]. I’m interested in working with orgs and individuals to prevent burnout proactively. (3) Some possible measurable outputs /​ artifacts:

Ozzie Gooen ($70,000)

Build infrastructure for the future of effective forecasting efforts From the application: What I will do I applied a few months ago and was granted $20,000 (thanks!). My purpose for this money is similar but greater in scope to the previous round. The previous funding has given me the security to be more ambitious, but I’ve realized that additional guarantees of funding should help significantly more. In particular, engineers can be costly and it would be useful to secure additional funding in order to give possible hires security. My main overall goal is to advance the use of predictive reasoning systems for purposes most useful for Effective Altruism. I think this is an area that could eventually make use of a good deal of talent, so I have come to see my work at this point as foundational. This work is in a few different areas that I think could be valuable. I expect that after a while a few parts will emerge as the most important, but think it is good to experiment early when the most effective route is not yet clear. I plan to use additional funds to scale my general research and development efforts. I expect that most of the money will be used on programming efforts. Foretold Foretold is a forecasting application that handles full probability distributions. I have begun testing it with users and have been asked for quite a bit more functionality. I’ve also mapped out the features that I expect people will eventually desire, and think there is a significant amount of work that would be significantly useful. One particular challenge is figuring out the best way to handle large numbers of questions (1000 active questions plus, at a time.) I believe this requires significant innovations in the user interface and backend architecture. I’ve made some wireframes and have experimented with different methods, and believe I have a pragmatic path forward, but will need to continue to iterate. I’ve talked with members of multiple organizations at this point who would like to use Foretold once it has a specific set of features, and cannot currently use any existing system for their purposes. […] Ken Ken is a project to help organizations set up and work with structured data, in essence allowing them to have private versions of Wikidata. Part of the project is Ken.js, a library which I’m beginning to integrate with Foretold. Expected Impact The main aim of EA forecasting would be to better prioritize EA actions. I think that if we could have a powerful system set up, it could make us better at predicting the future, better at understanding what things are important and better at coming to a consensus on challenging topics. Measurement In the short term, I’m using heuristics like metrics regarding user activity and upvotes on LessWrong. I’m also getting feedback by many people in the EA research community. In the medium to long term, I hope to set up evaluation/​estimation procedures for many projects and would include this one in that process. My thoughts and reasoning This grant is to support Ozzie Gooen in his efforts to build infrastructure for effective forecasting. Ozzie requested $70,000 to hire a software engineer who would support him on his work on the prediction platform www.foretold.iothat he is working on.

Johannes Heidecke ($25,000)

Supporting aspiring researchers of AI alignment to boost themselves into productivity From the application: (1) We would like to apply for a grant to fund an upcoming camp in Madrid that we are organizing. The camp consists of several weeks of online collaboration on concrete research questions, culminating in a 9-day intensive in-person research camp. Participants will work in groups on tightly-defined research projects in strategy and technical AI safety. Expert advisors from AI Safety/​Strategy organizations will help refine proposals to be tractable and relevant. This allows for time-efficient use of advisors’ knowledge and research experience, and ensures that research is well-aligned with current priorities. More information: https://​​aisafetycamp.com/​​ (2) The field of AI alignment is talent-constrained, and while there is a significant number of young aspiring researchers who consider focussing their career on research on this topic, it is often very difficult for them to take the first steps and become productive with concrete and relevant projects. This is partially due to established researchers being time-constrained and not having time to supervise a large number of students. The goals of AISC are to help a relatively large number of high-talent people to take their first concrete steps in research on AI safety, connect them to collaborate, and efficiently use the capacities of experienced researchers to guide them on their path. (3) We send out evaluation questionnaires directly after the camp and in regular intervals after the camp has passed. We measure impact on career decisions and collaborations and keep track of concrete output produced by the teams, such as blog posts or published articles. We have successfully organized two camps before and are in the preparation phase for the third camp taking place in April 2019 near Madrid. I was the main organizer for the second camp and am advising the core team of the current camp, as well as organizing funding. An overview of previous research projects from the first 2 camps can be found here: https://​​aisafetycamp.com/​​2018/​​06/​​05/​​aisc-1-research-summaries/​​ https://​​aisafetycamp.com/​​2018/​​12/​​07/​​aisc2-research-summaries/​​ We have evaluated the feedback from participants of the first two camps in the following two documents: https://​​docs.google.com/​​document/​​d/​​1f8wvsvQTv4wdBaggCaK8aKC5gFdIHUDcihnmVkZPM6I/​​edit?usp=sharing https://​​docs.google.com/​​document/​​d/​​18v2e-S3iZrOPbE7d9n26sUs1K6CkUAvezRvRj_xlcj8/​​edit?usp=sharing My thoughts and reasoning I’ve talked with various participants of past AI Safety camps and heard broadly good things across the board. I also generally have a positive impression of the people involved, though I don’t know any of the organizers very well. The material and testimonials that I’ve seen so far suggest that the camp successfully points participants towards a technical approach to AI Alignment, focusing on rigorous reasoning and clear explanations, which seems good to me. I am not really sure whether I’ve observed significant positive outcomes of camps in past years, though this might just be because I am less connected to the European community these days. I also have a sense that there is a lack of opportunities for people in Europe to productively work on AI Alignment related problems, and so I am particularly interested in investing in infrastructure and events there. This does however make this a higher-risk grant, since I think this means this event and the people surrounding it might become the main location for AI Alignment in Europe, and if the quality of the event and the people surrounding it isn’t high enough, this might cause long-term problems for the AI Alignment community in Europe. Concerns

Vyacheslav Matyuhin ($50,000)

An offline community hub for rationalists and EAs From the application: Our team is working on the offline community hub for rationalists and EAs in Moscow called Kocherga (details on Kocherga are here). We want to make sure it keeps existing and grows into the working model for building new flourishing local EA communities around the globe. Our key assumptions are:

Jacob Lagerros ($27,000)

Building infrastructure to give x-risk researchers superforecasting ability with minimal overhead From the application: Build a private platform where AI safety and policy researchers have direct access to a base of superforecaster-equivalents, and where aspiring EAs with smaller opportunity costs but excellent calibration perform useful work. […] I previously received two grants to work on this project: a half-time salary from EA Grants, and a grant for direct project expenses from BERI. Since then, I dropped out of a Master’s programme to work full-time on this, seeing that was the only way I could really succeed at building something great. However, during that transition there were some logistical issues with other grantmakers (explained in more detail in the application), hence I applied to the LTF for funding for food, board, travel and the runway to make more risk-neutral decisions and capture unexpected opportunities in the coming ~12 months of working on this." My thoughts and reasoning There were three main factors behind my recommending this grant:

Connor Flexman ($20,000)

Perform independent research in collaboration with John Salvatier I am recommending this grant with more hesitation than most of the other grants in this round. The reasons for hesitation are as follows:

Eli Tyre ($30,000)

Broad project support for rationality and community building interventions Eli has worked on a large variety of interesting and valuable projects over the last few years, many of them too small to have much payment infrastructure, resulting in him doing a lot of work without appropriate compensation. I think his work has been a prime example of picking low-hanging fruit by using local information and solving problems that aren’t worth solving at scale, and I want him to have resources to continue working in this space. Concrete examples of projects he has worked on that I am excited about:

Robert Miles ($39,000)

Producing video content on AI alignment From the application: My goals are:

MIRI ($50,000)

My thoughts and reasoning

In sum, I think MIRI is one of the most competent and skilled teams attempting to improve the long-term future, I have a lot of trust in their decision-making, and I’m strongly in favor of ensuring that they’re able to continue their work. Thoughts on funding gaps Despite all of this, I have not actually recommended a large grant to MIRI.

However, this is all complicated by a variety of countervailing considerations, such as the following three:

CFAR ($150,000)

I think that CFAR’s intro workshops have historically had a lot of positive impact. I think they have done so via three pathways.

In the last year, I had some concerns about the way CFAR communicated a lot of its insights, and I sensed an insufficient emphasis on a kind of robust and transparent reasoning that I don’t have a great name for. I don’t think the communication style I was advocating for is always the best way to make new discoveries, but is very important for establishing broader community-wide epistemic norms and enables a kind of long-term intellectual progress that I think is necessary for solving the intellectual challenges we’ll need to overcome to avoid global catastrophic risks. I think CFAR is likely to respond to last year’s events by improving their communication and reasoning style in this respect (from my perspective). My overall read is that CFAR is performing a variety of valuable community functions and has a strong enough track record that I want to make sure that it can continue existing as an institution. I didn’t have enough time this grant round to understand how the future of CFAR will play out; the current grant amount seems sufficient to ensure that CFAR does not have to take any drastic action until our next grant round. By the next grant round, I plan to have spent more time learning and thinking about CFAR’s trajectory and future, and to have a more confident opinion about what the correct funding level for CFAR is.