
Using GMP in Python (gmpy2)

Jianlin Su

October 28, 2014

Previously, the author wrote "First Trial of Using PARI/GP in Python", which briefly
introduced the method of calling PARI/GP in Python. PARI/GP is a relatively powerful num-
ber theory library, "designed for fast computations in number theory (factorization, algebraic
number theory, elliptic curves...)." It can be called by programming languages like C/C++ or
Python, and it is also a self-contained scripting language. However, if one only needs high-
precision large number arithmetic, GMP seems to better meet our needs.

Readers familiar with C/C++ will know GMP (full name: GNU Multiple Precision Arith-
metic Library). It is an open-source high-precision arithmetic library that includes not only
high-precision operations for ordinary integers, real numbers, and floating-point numbers but
also random number generation. In particular, it provides a very complete set of arithmetic
interfaces for number theory, such as the Miller-Rabin primality test algorithm, large prime
generation, the Euclidean algorithm, finding the inverse of elements in a field, Jacobi symbols,
Legendre symbols, etc.[Source]. Although calling GMP in C/C++ is not overly complex, being
able to use GMP in Python, which is known for its high development efficiency, is undoubtedly
a pleasant prospect. This is exactly what gmpy2 is for.

Introduction to gmpy2 gmpy2 is a Python extension library and a wrapper for GMP; its
predecessor was gmpy. After adjustments and encapsulation by the author, the use of gmpy2
has been greatly simplified. According to my current experience, using gmpy2 in Python has
at least the following advantages compared to using GMP in C/C++:

1. Simplified function names: The author has simplified a large number of GMP
function names. For example, for probabilistic primality testing, the command in
C/C++ is mpz_probab_prime_p, while in gmpy2, it is simply is_prime.
2. Convenient operator overloading: In C/C++, to add two mpz integers, we use
mpz_add(z_i, z_i, z_o). In gmpy2, we only need to use the + sign. More gener-
ally, adding an mpz integer to an int integer also only requires the + sign. Similar
overloading exists for subtraction, multiplication, division, modulo, exponentiation,
etc.

My study is not yet deep, so I can only offer these partial comments. Of course, as a call
from a third-party language, the efficiency of gmpy2 will generally be lower than calling GMP
directly in C/C++, but the difference is very small because gmpy2 is essentially a pre-compiled
C library. For a detailed gmpy2 tutorial, please see:
http://gmpy2.readthedocs.org/en/latest/

Basic Usage This article only provides a brief introduction. The following code runs in
Python 3.4. To initialize a large integer, you only need:

1 import gmpy2
2 n=gmpy2.mpz (1257787) # Initialization
3 gmpy2. is_prime (n) # Probabilistic primality test

1

https://kexue.fm/archives/2775/
http://gmplib.org/
http://blog.csdn.net/jcwkyl/article/details/3553411
https://pypi.python.org/pypi/gmpy2/2.0.4
http://gmpy2.readthedocs.org/en/latest/

This is parallel to C/C++. In fact, the parameter in the parentheses can be an integer or a
string. gmpy2 integrates not only the large integer mpz but also the high-precision floating-point
number mpfr. The usage is parallel to C/C++. Below are some basic calculations:

1 a+2 # Sum , result is an mpz
2 a-2 # Difference , result is an mpz
3 a*2 # Product , result is an mpz
4 a/2 # Quotient , result is an mpfr
5 a//2 # Quotient , result is an mpz
6 a**2 # Square , result is an mpz
7 a%2 # Modulo , result is an mpz

The overloading of these operators is both intuitive and convenient. It goes without saying
that replacing the number 2 with an mpz type variable is also possible. In fact, the operation
a+2 first converts 2 into an mpz 2 and then performs mpz addition.

Comparison with Python’s Built-in Features Python itself supports high-precision large
integer arithmetic, which is sufficient for cases where the numbers are relatively small. However,
it is not "fast." Readers only need to run the following two lines of code separately:

1 gmpy2.mpz (1257787) **123456 # gmpy2 calculation
2 1257787**123456 # Python built -in calculation

to feel the difference (of course, if the reader’s configuration is good, there might not be
a significant difference; in that case, please increase the exponent by ten times. My laptop’s
configuration is not high, please excuse me ˆ_ˆ).

Attempting Large Number Factorization Below is a piece of code I wrote for large
number factorization:

1 from gmpy2 import *
2 import time
3 start=time.clock ()
4 n = mpz (63281217910257742583918406571)
5 x = mpz (2)
6 y = x**2 + 1
7 for i in range(n):
8 p = gcd(y-x,n)
9 if p != 1:

10 print(p)
11 break
12 else:
13 y=(((y **2+1) %n) **2+1) %n
14 x=(x **2+1) %n
15 end=time.clock ()
16 print(end -start)

This code calls gmpy2, and the algorithm used is the Pollard rho method, running in its
simplest form without any optimization. On my laptop, this algorithm factorized:

63281217910257742583918406571 = 125778791843321 × 503115167373251

in 84 seconds (stopping once one factor was obtained). Of course, this is not a remarkable
achievement; this number is factored instantaneously in Mathematica and PARI/GP. This script
is purely for practice and testing Python’s calls to gmpy2.

Regarding the steps of the Pollard rho method:

2

1. Given a composite number n, let x0 = 2, y0 = x2
0 + 1;

2. Calculate p = gcd(x0 − y0, n). If p is not 1, then the result is a factor of n, stop;
3. If p = 1, then update xn+1 = x2

n + 1, yn+1 = (y2
n + 1)2 + 1, and repeat step 2.

In order to reduce the amount of calculation, the calculation of xn, yn at each step involves
a modulo n operation. The above steps are only the simplest part of the calculation and do
not handle various possible exceptions, such as n | (xn − yn), nor have certain details been
optimized. Please use with caution.

Reference URL:
http://hi.baidu.com/pytvzcnbuolrsue/item/ae714592f1fda8d87b7f010a

When reprinting, please include the address of this article: https://kexue.fm/archives/3026
For more detailed reprinting matters, please refer to: Scientific Space FAQ

3

http://hi.baidu.com/pytvzcnbuolrsue/item/ae714592f1fda8d87b7f010a
https://kexue.fm/archives/3026
https://kexue.fm/archives/6508

