
Text Sentiment Classification (I): Traditional Models

Jianlin Su

June 22, 2015

Preface: In April and May, I participated in two data mining competitions: the "Liangjian
Cup" organized by the School of Physics and Electronic Engineering, and the 3rd "Teddy Cup"
National Undergraduate Data Mining Challenge. Coincidentally, both competitions included a
problem primarily involving Chinese text sentiment classification. When doing the "Liangjian
Cup," as I was still a beginner with limited skills, I only implemented a simple sentiment classi-
fication model based on traditional ideas. In the subsequent "Teddy Cup," due to deeper study,
I had already gained a basic understanding of Deep Learning and implemented a sentiment
classification model using Deep Learning algorithms. Therefore, I plan to post both models on
this blog for readers’ reference. Beginners can compare the differences between the two and
understand the relevant ideas. Experts, please feel free to ignore.

Based on Sentiment Lexicon

Figure 1: The simplest human judgment logic

Traditional text sentiment classification based on a sentiment lexicon is the simplest simu-
lation of human memory and judgment logic, as shown in the figure above. First, we learn and
memorize some basic vocabulary, such as negation words like "not," positive words like "like"
and "love," and negative words like "dislike" and "hate," forming a basic corpus in our brain.
Then, we perform a direct split of the input sentence to see if the words we memorized exist in
the corresponding lexicon, and judge the sentiment based on the category of these words. For
example, in "I like mathematics," the word "like" is in our memorized positive lexicon, so we
judge it as having positive sentiment.

Based on this logic, we can implement lexicon-based sentiment classification through the
following steps: preprocessing, word segmentation, sentiment lexicon training, and judgment.
The entire process is shown in the figure below. The raw materials used to test the model
include comments on Mengniu milk provided by Professor Xue Yun, as well as mobile phone
review data purchased online (see attachment).

Text Preprocessing
Original corpora obtained by web crawlers usually contain information we don’t need, such

as extra HTML tags, so the corpus needs to be preprocessed. The Mengniu milk reviews
provided by Professor Xue Yun are no exception. Our team used Python as our preprocessing
tool, utilizing libraries like Numpy and Pandas, with regular expressions as the primary text
tool. After preprocessing, the raw corpus is standardized as shown in the table below, where
we use -1 to mark negative sentiment comments and 1 to mark positive sentiment comments.

1

Figure 2: Text sentiment classification based on sentiment lexicon

comment mark
0 Mengniu is out embarrassing itself again -1
1 Cherish life, stay away from Mengniu -1
...

...
...

1171 I have always loved drinking Mengniu pure milk, always, very much 1
1172 Giving Mengniu... health is the best gift. 1

...
...

...

Automatic Word Segmentation
To determine whether a sentence contains words from the sentiment lexicon, we need to

accurately cut the sentence into individual words, i.e., automatic word segmentation. We com-
pared existing segmentation tools and, considering both accuracy and ease of use on the Python
platform, finally chose "Jieba" as our segmentation tool.

The following table shows the segmentation results of various common tools on a typical
test sentence:

Test Sentence: The female secretary of the Industry and Information Technology
Department personally handed over the installation of 24-port switches and other
technical devices after passing through the subordinate departments every month.

Tool Result
Jieba Industry and Information Technology Dept/ Female/ Sec-

retary/ Monthly/ Passing through/ Subordinate/ Depart-
ment/ All/ Must/ Personally/ Hand over/ 24/ Port/
Switch/ Etc./ Technical/ Device/ ’s/ Installation/ Work

ICTCLAS Industry/n Information/n Dept/n Female/n Secretary/n
Monthly/r Passing through/p Subordinate/v Departmen-
t/n All/d Must/v Personally/d Hand over/v 24/m Port/q
Switch/n Etc./udeng Technical/n Device/n ’s/ude1 Instal-
lation/vn Work/vn

smallseg Industry Info/ Info Dept/ Female Secretary/ Monthly/
Passing through/ Subordinate/ Department/ Must all/ Per-
sonally/ Hand over/ 24/ Port/ Switch/ Etc./ Technical/ De-
vice/ ’s/ Installation/ Work

Yaha Industry and Information Technology Dept / Female / Sec-
retary / Monthly / Passing through / Subordinate / De-
partment / All / Must / Personally / Hand over / 24 / Port
/ Switch / Etc. / Technical / Device / ’s / Installation /
Work

2

Loading the Sentiment Lexicon
Generally speaking, the lexicon is the core part of text mining, and sentiment classification

is no exception. The sentiment lexicon is divided into four parts: positive sentiment lexicon,
negative sentiment lexicon, negation lexicon, and degree adverb lexicon. To obtain a more
complete lexicon, we collected several sentiment lexicons from the internet, integrated and de-
duplicated them, and adjusted some words to achieve the highest possible accuracy.

Figure 3: Building the sentiment lexicon

Our team did not simply integrate lexicons collected online; we also cleaned and updated
them purposefully. Specifically, we added certain industry-specific terms to increase the hit
rate. Word frequencies for certain terms vary significantly across industries, and these words
might be key to sentiment classification. For example, the Mengniu milk data is from the food
and beverage industry; in this industry, words like "eat" and "drink" appear frequently and
usually imply positive evaluations, while "don’t eat" or "don’t drink" usually imply negative
evaluations. In other fields, these words may have no obvious sentiment. Another example is
the mobile phone industry, where "drop-resistant" or "waterproof" are positive terms. Therefore,
it is necessary to consider these factors in the model.

Text Sentiment Classification
The rules for lexicon-based sentiment classification are quite mechanical. For simplicity,

we assign a weight of 1 to each positive word and -1 to each negative word, assuming that
sentiment values satisfy the principle of linear superposition. We segment the sentence; if the
resulting word vector contains corresponding words, we add the weight. Negation words and
degree adverbs have special rules: negation words flip the sign of the weight, and degree adverbs
double the weight. Finally, the sentiment is judged based on the sign of the total weight. The
basic algorithm is shown in the flowchart.

It should be noted that for the feasibility of programming and testing, we made several
assumptions (simplifications). Assumption 1: We assume all positive and negative words have
equal weights. This only holds in simple cases; in more precise classification, "hate" is clearly
more severe than "dislike." A fix is to assign different weights to each word, which we will explore
in the second part. Assumption 2: We assume weights are linearly additive. This holds in most
cases, but we will explore non-linearity in the second part to enhance accuracy. Assumption
3: For negation and degree adverbs, we only perform simple inversion and doubling. In reality,
different adverbs have different intensities (e.g., "very much like" is stronger than "quite like"),
but we did not distinguish them.

We chose Python as the implementation platform. Thanks to Python’s rich extension sup-
port, we implemented all the above steps in less than a hundred lines of code, resulting in an
effective sentiment classification algorithm, demonstrating Python’s conciseness. Next, we will
verify the effectiveness of our algorithm.

Model Result Verification

As a basic test, we first applied our model to the Mengniu milk reviews. The results were
satisfactory, reaching an accuracy of 82.02%. The detailed report is in the table below:

3

Figure 4: Flowchart of lexicon-based text classification

Data Content Pos. Samples Neg. Samples Accuracy TPR TNR
Milk Reviews 1005 1170 0.8202 0.8209 0.8197

(Where positive samples are positive sentiment reviews, negative samples are negative sen-
timent data,

Accuracy = Correctly judged samples
Total samples

True Positive Rate (TPR) = Positive samples judged as positive
Total positive samples

True Negative Rate (TNR) = Negative samples judged as negative
Total negative samples

)
To our surprise, applying the model adjusted for milk reviews directly to mobile phone

reviews also yielded an 81.96% accuracy! This indicates that our model has good robustness
and performs well across different industries.

Data Content Pos. Samples Neg. Samples Accuracy TPR TNR
Phone Reviews 1158 1159 0.8196 0.7539 0.8852

Conclusion: Our team initially implemented a lexicon-based text sentiment classification
model. Test results show that simple judgment rules can achieve decent accuracy and robustness.
Generally, a model with over 80% accuracy has production value and is suitable for industrial
environments. Clearly, our model has reached this standard.

Difficulties

After two tests, we can conclude that our model’s accuracy is basically above 80%. Mature
commercial programs (like BosonNLP) have accuracies around 85% to 90%. This shows our
simple model is effective, but also suggests that traditional lexicon-based models have limited
room for improvement due to the inherent complexity of sentiment classification. We identified
several difficulties:

4

Complexity of the Language System
Ultimately, this is because the language system in our brain is extremely complex. (1) We are doing text sentiment classification; both text and sentiment are products of human culture, meaning humans are the only accurate standard. (2) Human language is a complex cultural product; a sentence is not a simple linear combination of words but contains complex non-linearity. (3) We perceive a sentence as a whole rather than a set of words; different combinations, orders, and counts of words bring different meanings and sentiments.
Therefore, sentiment classification is an attempt to simulate human thinking. Our model

simulates simple patterns, but real sentiment judgment is a complex network, not just simple
rules.

The Brain Does More Than Just Classification
When judging sentiment, we also identify the sentence type (imperative, interrogative, or

declarative), focus on every word (subject, verb, object), and consider context. These uncon-
scious processes help form a complete understanding. Our brain is a high-speed processor doing
many tasks simultaneously to achieve accurate judgment.

Learning and Prediction
Humans possess learning consciousness and ability. We acquire knowledge through teaching

and our own summaries or guesses. In sentiment classification, we don’t just memorize words;
we infer new ones. For example, if we know "like" and "love" are positive, we can guess "fond
of" is also positive. This learning ability is an optimized memory mode that links words rather
than just storing them.

Optimization Ideas

Based on the analysis above, we propose the following improvements:
Introduction of Non-linear Features
Real human sentiment classification is heavily non-linear. To improve accuracy, we must

introduce non-linearity. This refers to how word combinations form new meanings. Our initial
model introduced simple non-linearity by treating adjacent positive and negative words as a
negative block. More refined weights can be achieved via a "Lexicon Matrix":

Word (Empty) Like Love . . . Hate . . .
(Empty) 0 1 2 . . . -1 . . .

Like 1 2 3 . . . -2 . . .
Love 2 3 4 . . . -2 . . .

...
...

...
...

...
... . . .

Hate -1 -2 -3 . . . -2 . . .
...

...
...

...
...

... . . .

Table 1: Conceptual Lexicon Matrix for combination weights

While not all combinations are valid, we can calculate combination weights. However, the
number of sentiment words is large, making the matrix size (square of word count) a Big Data
problem. Efficient implementation requires optimized construction and indexing schemes.

Automatic Expansion of Sentiment Lexicon
In the internet age, new words emerge constantly. Automatic expansion is necessary for

timeliness. We can use unsupervised word frequency statistics on large unlabeled datasets (e.g.,
from Weibo or communities).

Our goal is to use the existing model for unsupervised learning to expand the lexicon,
creating a positive feedback loop. We classify unlabeled data using the current model, then
compare word frequencies in positive vs. negative sets. If a word (e.g., "black-hearted") appears
frequently in negative reviews but rarely in positive ones, we add it to the negative lexicon with
a negative weight.

Example: Suppose "black-hearted" is not in our lexicon, but "detestable" and "dislike" are.
After classification, we find "black-hearted" appears often in negative results. We add it to

the negative lexicon and update:
Conclusion

5

Sentence Weight
This black-hearted boss is too detestable -2

I really dislike the practices of this black-hearted enterprise -2
I hate this black-hearted shop -2

This shop is really black-hearted! 0

Sentence Weight
This black-hearted boss is too detestable -3

I really dislike the practices of this black-hearted enterprise -3
I hate this black-hearted shop -3

This shop is really black-hearted! -2

• Lexicon-based classification is easy to implement; the core is lexicon training.

• Language is complex; linear models have limited performance.

• Introducing non-linear features effectively improves accuracy.

• Unsupervised expansion mechanisms ensure robustness and timeliness.

References

• Deep Learning Notes: http://blog.csdn.net/zouxy09/article/details/8775360

• Yoshua Bengio, et al. A Neural Probabilistic Language Model, 2003

• Sentiment Analysis Dataset: http://www.datatang.com/data/11857

• Jieba Segmentation: https://github.com/fxsjy/jieba

• NLPIR/ICTCLAS: http://ictclas.nlpir.org/

• smallseg: https://code.google.com/p/smallseg/

• yaha: https://github.com/jannson/yaha

• HowNet Sentiment Word List: http://www.keenage.com/html/c_bulletin_2007.htm

• NTUSD Lexicon: http://www.datatang.com/data/11837

• BosonNLP: http://bosonnlp.com/product

Implementation Platform

Tested environment:

• Windows 8.1 OS.

• Python 3.4 (Better Unicode/Chinese support than 2.x).

• Numpy for numerical computation.

• Pandas for data analysis.

• Jieba for Chinese word segmentation.

6

http://blog.csdn.net/zouxy09/article/details/8775360
http://www.datatang.com/data/11857
https://github.com/fxsjy/jieba
http://ictclas.nlpir.org/
https://code.google.com/p/smallseg/
https://github.com/jannson/yaha
http://www.keenage.com/html/c_bulletin_2007.htm
http://www.datatang.com/data/11837
http://bosonnlp.com/product

Code List

Resource: Sentiment Lexicon.zip
Preprocessing

1 # -*- coding : utf -8 -*-
2 import numpy as np
3 import pandas as pd
4 import jieba
5

6 def yuchuli (s,m):
7 wenjian = pd. read_csv (s, delimiter =’ xxx ’, encoding =’utf -8

’, header = None , names =[’comment ’])
8 wenjian = wenjian [’comment ’]. str. replace (’(<.*? >.*? <.*? >) ’,’’).str.

replace (’(<.*? >) ’,’’).str. replace (’(@.*?[:]) ’,’ ’)
9 wenjian = pd. DataFrame ({’comment ’: wenjian [wenjian != ’’]})

10 wenjian . to_csv (’out_ ’+s, header =False , index=False)
11 wenjian [’mark ’] = m
12 return wenjian . reset_index ()
13

14 neg = yuchuli (’data_neg .txt ’ ,-1)
15 pos = yuchuli (’data_pos .txt ’ ,1)
16 mydata = pd. concat ([neg ,pos], ignore_index =True)[[’comment ’,’mark ’]]

Loading Lexicon
1 negdict = []
2 posdict = []
3 nodict = []
4 plusdict = []
5 sl = pd. read_csv (’dict/neg.txt ’, header =None , encoding =’utf -8’)
6 for i in range(len(sl [0])): negdict . append (sl [0][i])
7 sl = pd. read_csv (’dict/pos.txt ’, header =None , encoding =’utf -8’)
8 for i in range(len(sl [0])): posdict . append (sl [0][i])
9 sl = pd. read_csv (’dict/no.txt ’, header =None , encoding =’utf -8’)

10 for i in range(len(sl [0])): nodict . append (sl [0][i])
11 sl = pd. read_csv (’dict/plus.txt ’, header =None , encoding =’utf -8’)
12 for i in range(len(sl [0])): plusdict . append (sl [0][i])

Prediction Function
1 def predict (s, negdict , posdict , nodict , plusdict):
2 p = 0
3 sd = list(jieba.cut(s))
4 for i in range(len(sd)):
5 if sd[i] in negdict :
6 if i>0 and sd[i -1] in nodict : p = p + 1
7 elif i>0 and sd[i -1] in plusdict : p = p - 2
8 else: p = p - 1
9 elif sd[i] in posdict :

10 if i>0 and sd[i -1] in nodict : p = p - 1
11 elif i>0 and sd[i -1] in plusdict : p = p + 2
12 elif i>0 and sd[i -1] in negdict : p = p - 1
13 elif i<len(sd) -1 and sd[i+1] in negdict : p = p - 1
14 else: p = p + 1
15 elif sd[i] in nodict :
16 p = p - 0.5
17 return p

Simple Test

7

https://kexue.fm/usr/uploads/2017/09/1922797046.zip

1 tol = 0
2 yes = 0
3 mydata [’result ’] = 0
4 for i in range(len(mydata)):
5 tol = tol + 1
6 if predict (mydata .loc[i,’comment ’], negdict , posdict , nodict ,

plusdict)* mydata .loc[i,’mark ’] > 0:
7 yes = yes + 1
8 mydata .loc[i,’result ’] = 1
9 print(yes/tol)

8

