
Python Multiprocessing Programming Tips

Su Jianlin

February 19, 2017

1 The Process
In Python, if you want to perform multi-process computing, it is generally implemented through
multiprocessing. The most commonly used feature is the process pool within multiprocessing.
For example:

1 from multiprocessing import Pool
2 import time
3

4 def f(x):
5 time.sleep (1)
6 print x+1
7 return x+1
8

9 a = range (10)
10 pool = Pool (4)
11 b = pool.map(f, a)
12 pool.close ()
13 pool.join ()
14

15 print b

Writing it this way is concise, clear, and indeed convenient. Interestingly, you only need
to change multiprocessing to multiprocessing.dummy to switch the program from multi-
processing to multi-threading.

2 Objects
Python is an object-oriented programming language, and we often encapsulate programs into
classes. However, within a class, the above method does not work well. For example:

1 from multiprocessing import Pool
2 import time
3

4 class test:
5 def __init__ (self):
6 self.a = range (10)
7 def run(self):
8 def f(x):
9 time.sleep (1)

10 print x+1
11 return x+1
12 pool = Pool (4)
13 self.b = pool.map(f, self.a)
14 pool.close ()
15 pool.join ()

1

16

17 t = test ()
18 t.run ()
19 print t.b

This code, which looks quite natural, throws an error when run:

cPickle.PicklingError: Can’t pickle <type ’function’>: attribute lookup
__builtin__.function failed

However, if you replace multiprocessing with multiprocessing.dummy, no error occurs.
Simply put, this is because variables cannot be shared between multiple processes, whereas
multiple threads reside within the same process and naturally do not face this issue.

3 Imitation
To research multi-process programming within objects, I made several attempts. Later, I re-
alized that many modules in gensim support parallelism, so I decided to imitate them. Sure
enough, I found ldamulticore.py. After repeatedly comparing and studying it with online ma-
terials, I summarized a relatively concise, convenient, and universal way of writing it.

Like most multi-process programming, to communicate between processes, a Queue object
needs to be established. The difference is that general online tutorials use the Process function
from multiprocessing combined with loop statements to start multiple processes, while us-
ing Pool usually fails (unless you use multiprocessing.Manager.Queue, refer to this article).
However, gensim uses a trick with Pool that allows starting multiple processes directly through
Pool. The work of experts is indeed different. The reference code is as follows:

1 from multiprocessing import Pool , Queue
2 import time
3

4 class test:
5 def __init__ (self):
6 self.a = range (10)
7 def run(self):
8 in_queue , out_queue = Queue (), Queue ()
9 for i in self.a:

10 in_queue .put(i)
11 def f(in_queue , out_queue):
12 while not in_queue .empty ():
13 time.sleep (1)
14 out_queue .put(in_queue .get () +1)
15 pool = Pool (4, f, (in_queue , out_queue))
16 self.b = []
17 while len(self.b) < len(self.a):
18 if not out_queue .empty ():
19 t = out_queue .get ()
20 print t
21 self.b. append (t)
22 pool. terminate ()
23

24 t = test ()
25 t.run ()
26 print t.b

In summary, the approach is to establish two Queues: one responsible for task queuing and
the other for retrieving results. What is quite magical is that Pool actually has second and

2

https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/ldamulticore.py
https://my.oschina.net/yangyanxing/blog/296052

third parameters! For specific details, please see the official documentation. These are the
initialization functions for the Pool, which also run in parallel automatically.

Note that after running the line pool = Pool(4, f, (in_queue, out_queue)), the multi-
process starts, but it does not wait for the processes to finish; instead, it immediately executes
the subsequent statements. At this point, you could use pool.close() and pool.join() as
before to let the processes complete before continuing. However, the solution used here is
to directly execute the result-retrieval statements and determine whether the processes have
finished through that process. Once finished, the process pool is closed via pool.terminate().
This style of writing is basically universal.

When reprinting, please include the original article address:
https://kexue.fm/archives/4231
For more detailed reprinting matters, please refer to:
"Scientific Space FAQ"

3

https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool
https://kexue.fm/archives/4231
https://kexue.fm/archives/6508#%E6%96%87%E7%AB%A0%E5%A6%82%E4%BD%95%E8%BD%AC%E8%BD%BD/%E5%BC%95%E7%94%A8

	The Process
	Objects
	Imitation

