

Simple Python Implementation of Gillespie Simulation

Su Jianlin

June 7, 2018

Due to professional requirements, I needed to perform stochastic simulation of the Master Equation. I couldn't find a suitable Python implementation online, so I wrote one myself and am sharing the source code here. As for the Gillespie algorithm itself, I will not introduce it; readers who need it will naturally understand, and those who do not are advised not to bother.

Source Code

In fact, the basic Gillespie simulation algorithm is very simple and easy to implement. Below is a reference example:

```
1 #! -*- coding: utf-8 -*-
2
3 import numpy as np
4 from scipy.special import comb
5
6 class Reaction: # Encapsulated class representing each chemical
7     reaction
8     def __init__(self, rate=0., num_lefts=None, num_rights=None):
9         self.rate = rate # Reaction rate
10        assert len(num_lefts) == len(num_rights)
11        self.num_lefts = np.array(num_lefts) # Number of each reactant
12        before reaction
13        self.num_rights = np.array(num_rights) # Number of each
14        reactant after reaction
15        self.num_diff = self.num_rights - self.num_lefts # Change in
16        number
17        def combine(self, n, s): # Calculate combinations
18            return np.prod(comb(n, s))
19        def propensity(self, n): # Calculate propensity function
20            return self.rate * self.combine(n, self.num_lefts)
21
22 class System: # Encapsulated class representing a system of multiple
23     reactions
24     def __init__(self, num_elements):
25         assert num_elements > 0
26         self.num_elements = num_elements # Number of species in the
27         system
28         self.reactions = [] # Set of reactions
29         def add_reaction(self, rate=0., num_lefts=None, num_rights=None):
30             assert len(num_lefts) == self.num_elements
31             assert len(num_rights) == self.num_elements
32             self.reactions.append(Reaction(rate, num_lefts, num_rights))
33         def evolve(self, steps, inits=None): # Simulate evolution
34             self.t = [0] # Time trajectory, t[0] is initial time
35             if inits is None:
36                 self.n = [np.ones(self.num_elements)]
```

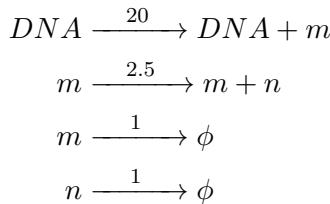
```

31     else:
32         self.n = [np.array(inits)] # Reactant counts, n[0] is
33         initial count
34         for i in range(steps):
35             A = np.array([rec.propensity(self.n[-1])
36                         for rec in self.reactions]) # Propensity for
37             each reaction
38             A0 = A.sum()
39             A /= A0 # Normalize to get probability distribution
40             t0 = -np.log(np.random.random()) / A0 # Time interval to next
41             reaction
42             self.t.append(self.t[-1] + t0)
43             d = np.random.choice(self.reactions, p=A) # Choose one
44             reaction to occur
45             self.n.append(self.n[-1] + d.num_diff)

```

Usage

For convenience, I have encapsulated the reactions. Now, you can perform simulations directly based on the reaction equations without additional programming. For example, consider a simple gene expression model:



Here m and n represent the counts of mRNA and protein, respectively, and ϕ represents the empty set, implying degradation or "creation from nothing." The first reaction can be simplified to $\phi \xrightarrow{20} m$, so it is actually four reaction equations involving two species m and n .

```

1 num_elements = 2
2 system = System(num_elements)
3
4 system.add_reaction(20, [0, 0], [1, 0])
5 system.add_reaction(2.5, [1, 0], [1, 1])
6 system.add_reaction(1, [1, 0], [0, 0])
7 system.add_reaction(1, [0, 1], [0, 0])
8
9 system.evolute(100000)

```

Then you can perform statistics and plotting:

```

1 import matplotlib.pyplot as plt
2 import pandas as pd
3
4 x = system.t
5 y = [i[1] for i in system.n]
6
7 plt.clf()
8 plt.plot(x, y) # Trajectory plot of protein
9 plt.xlim(0, x[-1]+1)
10 plt.savefig('test.png')
11
12 d = pd.Series([i[1] for i in system.n]).value_counts()
13 d = d.sort_index()

```

```
14 d /= d.sum()
15 plt.clf()
16 plt.plot(d.index, d) # (Empirical) distribution plot of protein
17 plt.savefig('test.png')
```

The results are:

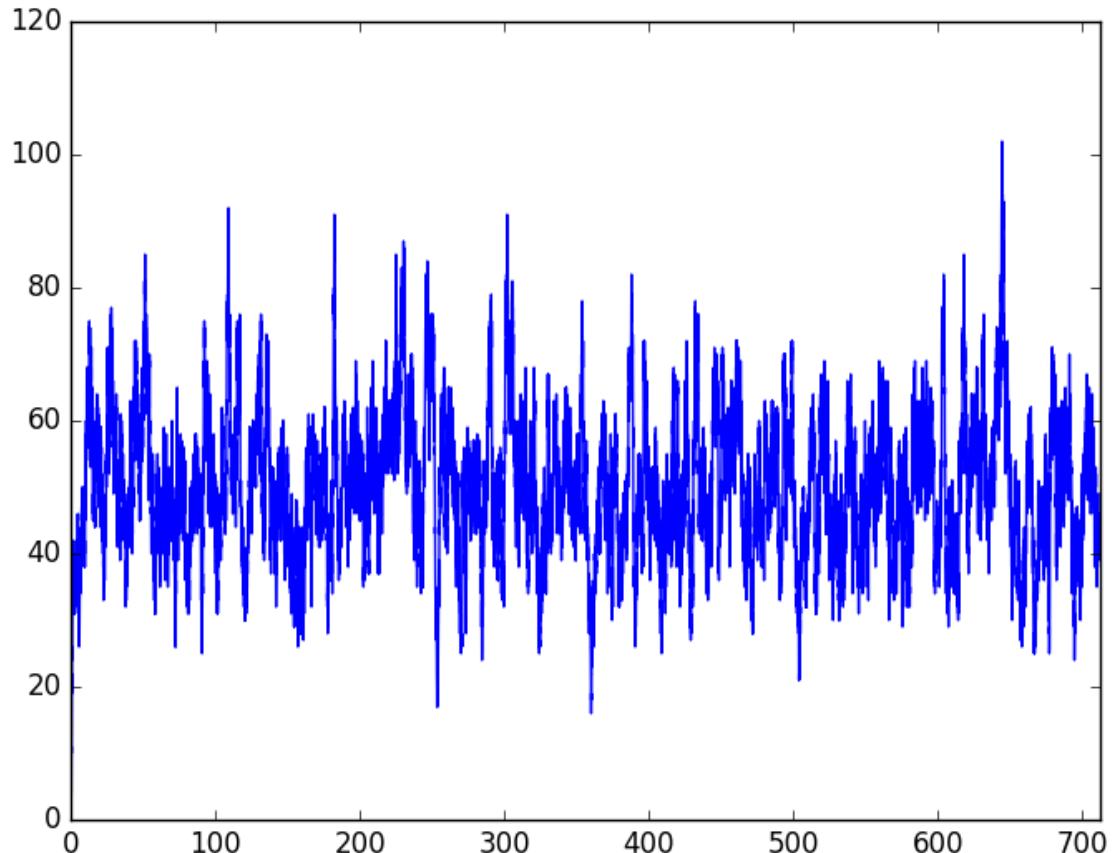


Figure 1: Protein variation over time (trajectory)

*When reposting, please include the original address of this article:
<https://kexue.fm/archives/5607>*

*For more detailed information regarding reposting, please refer to:
"Scientific Space FAQ"*

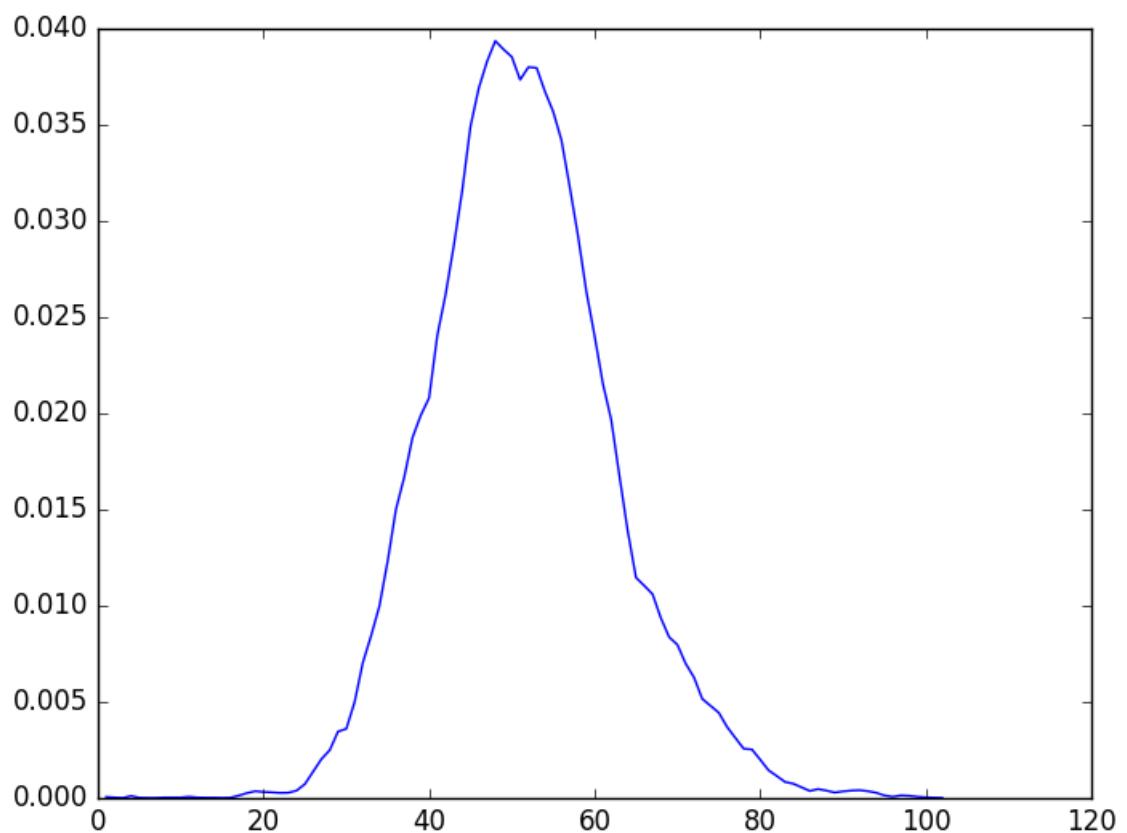


Figure 2: Statistical distribution of protein