1
2

3
3

Simple Python Implementation of Gillespie Simulation

Su Jianlin

June 7, 2018

Due to professional requirements, I needed to perform stochastic simulation of the Master
Equation. I couldn’t find a suitable Python implementation online, so I wrote one myself and
am sharing the source code here. As for the Gillespie algorithm itself, I will not introduce it;
readers who need it will naturally understand, and those who do not are advised not to bother.

Source Code

In fact, the basic Gillespie simulation algorithm is very simple and easy to implement. Below
is a reference example:

#! -x- coding: utf-8 -*-

import numpy as np
from scipy.special import comb

class Reaction: # Encapsulated class representing each chemical
reaction

def __init__(self, rate=0., num_lefts=None, num_rights=None):

self .rate = rate # Reaction rate

assert len(num_lefts) == len(num_rights)

self .num_lefts = np.array(num_lefts) # Number of each reactant
before reaction

self .num_rights = np.array(num_rights) # Number of each

reactant after reaction
self .num_diff = self.num_rights - self.num_lefts # Change in
number
def combine(self, n, s): # Calculate combinations
return np.prod(comb(n, s))
def propensity(self, n): # Calculate propensity function
return self.rate * self.combine(n, self.num_lefts)

class System: # Encapsulated class representing a system of multiple
reactions
def __init__(self, num_elements):
assert num_elements > 0
self .num_elements = num_elements # Number of species in the
system
self.reactions = [] # Set of reactions
def add_reaction(self, rate=0., num_lefts=None, num_rights=None):
assert len(num_lefts) == self.num_elements
assert len(num_rights) == self.num_elements
self .reactions.append(Reaction(rate, num_lefts, num_rights))
def evolute(self, steps, inits=None): # Simulate evolution

self.t = [0] # Time trajectory, t[0] is initial time
if inits is None:
self .n = [np.ones(self.num_elements)]



41

else:
self .n = [np.array(inits)] # Reactant counts, n[0] is
initial count
for i in range(steps):
A = np.array([rec.propensity(self.n[-1])
for rec in self.reactions]) # Propensity for
each reaction
A0 = A.sum()
A /= AO # Normalize to get probability distribution
t0 -np.log(np.random.random()) /A0 # Time interval to next
reaction
self .t.append(self.t[-1] + t0)
d = np.random.choice(self.reactions, p=A) # Choose one
reaction to occur
self .n.append(self.n[-1] + d.num_diff)

Usage

For convenience, I have encapsulated the reactions. Now, you can perform simulations directly
based on the reaction equations without additional programming. For example, consider a
simple gene expression model:

DNA —2 s DNA+m

2.5
m-———-—-m-+n

m——s ¢
n—= o}
Here m and n represent the counts of mRNA and protein, respectively, and ¢ represents the

empty set, implying degradation or "creation from nothing." The first reaction can be simplified
to ¢ N m, so it is actually four reaction equations involving two species m and n.
num_elements = 2

system = System(num_elements)

system.add_reaction (20, [0, 0], [1, 01)
system.add_reaction (2.5, [1, 0], [1, 11)
system.add_reaction(l, [1, 0], [0, 0])
system.add_reaction(1, [0, 1], [0, 0])

system.evolute (100000)
Then you can perform statistics and plotting:

import matplotlib.pyplot as plt
import pandas as pd

"
|

system.t
y = [i[1] for i in system.n]

plt.clf ()

plt.plot(x, y) # Trajectory plot of protein
plt.x1im (0, x[-1]+1)
plt.savefig(’test.png’)

d = pd.Series([i[1] for i in system.n]).value_counts ()
d.sort_index ()

Q.
I



v d /= d.sum()

5 plt.clf ()

16 plt.plot(d.index, d) # (Empirical) distribution plot of protein
17 plt.savefig(’test.png’)

The results are:

120 T T T T T T T

100 | .

0 100 200 300 400 200 600 700

Figure 1: Protein variation over time (trajectory)

When reposting, please include the original address of this article:
https://kexue.fm/archives/5607

For more detailed information regarding reposting, please refer to:
"Scientific Space FAQ"


https://kexue.fm/archives/5607
https://kexue.fm/archives/6508#%E6%96%87%E7%AB%A0%E5%A6%82%E4%BD%95%E8%BD%AC%E8%BD%BD/%E5%BC%95%E7%94%A8

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000
0

20

40 60 80

Figure 2: Statistical distribution of protein

100

120



