
Simple Python Implementation of Gillespie Simulation

Su Jianlin

June 7, 2018

Due to professional requirements, I needed to perform stochastic simulation of the Master
Equation. I couldn’t find a suitable Python implementation online, so I wrote one myself and
am sharing the source code here. As for the Gillespie algorithm itself, I will not introduce it;
readers who need it will naturally understand, and those who do not are advised not to bother.

Source Code
In fact, the basic Gillespie simulation algorithm is very simple and easy to implement. Below
is a reference example:

1 #! -*- coding : utf -8 -*-
2

3 import numpy as np
4 from scipy. special import comb
5

6 class Reaction : # Encapsulated class representing each chemical
reaction

7 def __init__ (self , rate =0., num_lefts =None , num_rights =None):
8 self.rate = rate # Reaction rate
9 assert len(num_lefts) == len(num_rights)

10 self. num_lefts = np.array(num_lefts) # Number of each reactant
before reaction

11 self. num_rights = np.array(num_rights) # Number of each
reactant after reaction

12 self. num_diff = self. num_rights - self. num_lefts # Change in
number

13 def combine (self , n, s): # Calculate combinations
14 return np.prod(comb(n, s))
15 def propensity (self , n): # Calculate propensity function
16 return self.rate * self. combine (n, self. num_lefts)
17

18 class System : # Encapsulated class representing a system of multiple
reactions

19 def __init__ (self , num_elements):
20 assert num_elements > 0
21 self. num_elements = num_elements # Number of species in the

system
22 self. reactions = [] # Set of reactions
23 def add_reaction (self , rate =0., num_lefts =None , num_rights =None):
24 assert len(num_lefts) == self. num_elements
25 assert len(num_rights) == self. num_elements
26 self. reactions . append (Reaction (rate , num_lefts , num_rights))
27 def evolute (self , steps , inits=None): # Simulate evolution
28 self.t = [0] # Time trajectory , t[0] is initial time
29 if inits is None:
30 self.n = [np.ones(self. num_elements)]

1

31 else:
32 self.n = [np.array(inits)] # Reactant counts , n[0] is

initial count
33 for i in range(steps):
34 A = np.array ([rec. propensity (self.n[-1])
35 for rec in self. reactions]) # Propensity for

each reaction
36 A0 = A.sum ()
37 A /= A0 # Normalize to get probability distribution
38 t0 = -np.log(np. random . random ())/A0 # Time interval to next

reaction
39 self.t. append (self.t[-1] + t0)
40 d = np. random . choice (self.reactions , p=A) # Choose one

reaction to occur
41 self.n. append (self.n[-1] + d. num_diff)

Usage
For convenience, I have encapsulated the reactions. Now, you can perform simulations directly
based on the reaction equations without additional programming. For example, consider a
simple gene expression model:

DNA
20−−−−−→ DNA + m

m
2.5−−−−−→ m + n

m
1−−−−−→ ϕ

n
1−−−−−→ ϕ

Here m and n represent the counts of mRNA and protein, respectively, and ϕ represents the
empty set, implying degradation or "creation from nothing." The first reaction can be simplified
to ϕ

20−−−−−→ m, so it is actually four reaction equations involving two species m and n.
1 num_elements = 2
2 system = System (num_elements)
3

4 system . add_reaction (20, [0, 0], [1, 0])
5 system . add_reaction (2.5 , [1, 0], [1, 1])
6 system . add_reaction (1, [1, 0], [0, 0])
7 system . add_reaction (1, [0, 1], [0, 0])
8

9 system . evolute (100000)

Then you can perform statistics and plotting:
1 import matplotlib . pyplot as plt
2 import pandas as pd
3

4 x = system .t
5 y = [i[1] for i in system .n]
6

7 plt.clf ()
8 plt.plot(x, y) # Trajectory plot of protein
9 plt.xlim (0, x[-1]+1)

10 plt. savefig (’test.png ’)
11

12 d = pd. Series ([i[1] for i in system .n]). value_counts ()
13 d = d. sort_index ()

2

14 d /= d.sum ()
15 plt.clf ()
16 plt.plot(d.index , d) # (Empirical) distribution plot of protein
17 plt. savefig (’test.png ’)

The results are:

Figure 1: Protein variation over time (trajectory)

When reposting, please include the original address of this article:
https://kexue.fm/archives/5607

For more detailed information regarding reposting, please refer to:
"Scientific Space FAQ"

3

https://kexue.fm/archives/5607
https://kexue.fm/archives/6508#%E6%96%87%E7%AB%A0%E5%A6%82%E4%BD%95%E8%BD%AC%E8%BD%BD/%E5%BC%95%E7%94%A8

Figure 2: Statistical distribution of protein

4

