
Let’s Talk About the Gradient Vanishing/Exploding Problem in
RNNs

Jianlin Su

November 13, 2020

Although Transformer-based models have conquered most fields of NLP, RNN models such
as LSTM and GRU still have their unique value in certain scenarios. Therefore, RNNs remain
a model worth studying thoroughly. The analysis of RNN gradients is an excellent example
of thinking about and analyzing models from an optimization perspective, and it is worth
careful consideration. As you may know, questions like "Why can LSTM solve the gradient
vanishing/exploding problem?" are still popular interview questions today...

Figure 1: Classic LSTM

Many netizens have provided answers to such questions. However, after searching through
various articles (including some answers on Zhihu, columns, and classic English blogs), I found
that there are no particularly good answers: some derivation notations are chaotic, some argu-
ments do not highlight the key points, and overall they feel insufficiently clear and self-consistent.
To this end, I will attempt to provide my own understanding for your reference.

1 RNN and its Gradient
The unified definition of an RNN is:

ht = f (xt, ht−1; θ) (1)

where ht is the output at each step, which is jointly determined by the current input xt and the
previous output ht−1, and θ represents the trainable parameters. In the most basic analysis,
we can assume that ht, xt, θ are all one-dimensional. This allows us to gain the most intuitive
understanding, and the results still have reference value for high-dimensional cases. We con-
sider the gradient because our current mainstream optimizers are still gradient descent and its
variants, which require the models we define to have reasonable gradients. We can obtain:

dht

dθ
= ∂ht

∂ht−1

dht−1
dθ

+ ∂ht

∂θ
(2)

As we can see, the gradient of an RNN is actually also an RNN; the current gradient dht
dθ is a func-

tion of the previous gradient dht−1
dθ and the current operation’s gradient ∂ht

∂θ . At the same time,

1

we can see from the above equation that the phenomenon of gradient vanishing or exploding is
almost inevitable: when

∣∣∣ ∂ht
∂ht−1

∣∣∣ < 1, it means the historical gradient information decays, so the
gradient will inevitably vanish as the number of steps increases (similar to limn→∞ 0.9n → 0);
when

∣∣∣ ∂ht
∂ht−1

∣∣∣ > 1, the historical gradient information gradually strengthens, so the gradient
will inevitably explode as the number of steps increases (similar to limn→∞ 1.1n → ∞). It is
impossible for

∣∣∣ ∂ht
∂ht−1

∣∣∣ to be exactly 1 all the time. Of course, it is possible that it is greater
than 1 at some moments and less than 1 at others, eventually stabilizing around 1, but the
probability of this is very small and requires very careful model design.

Therefore, as the number of steps increases, gradient vanishing or exploding is almost in-
evitable; we can only alleviate this problem for a finite number of steps.

2 Vanishing or Exploding?
Having said that, we haven’t clarified one question: what exactly is gradient vanishing/exploding
in an RNN? Gradient explosion is easy to understand—the gradient value diverges and may
even become NaN. Does gradient vanishing mean the gradient becomes zero? Not exactly.
We just said that gradient vanishing occurs when

∣∣∣ ∂ht
∂ht−1

∣∣∣ is consistently less than 1, causing
historical gradients to decay continuously, but this doesn’t mean the total gradient becomes
zero. Specifically, iterating further, we have:

dht

dθ
= ∂ht

∂ht−1

dht−1
dθ

+ ∂ht

∂θ

= ∂ht

∂θ
+ ∂ht

∂ht−1

∂ht−1
∂θ

+ ∂ht

∂ht−1

∂ht−1
∂ht−2

∂ht−2
∂θ

+ . . .

(3)

Clearly, as long as ∂ht
∂θ is not zero, the probability of the total gradient being zero is very small.

However, if we continue iterating, the coefficient in front of the term ∂h1
∂θ is the product of t − 1

terms ∂ht
∂ht−1

∂ht−1
∂ht−2

· · · ∂h2
∂h1

. If their absolute values are all less than 1, the result will tend toward
0. Consequently, dht

dθ contains almost no information from the initial gradient ∂h1
∂θ . This is the

true meaning of gradient vanishing in RNNs: the further away from the current time step, the
less significant the feedback gradient signal becomes, and it may eventually have no effect at
all. This means that the RNN’s ability to capture long-distance semantics fails.

Simply put, if your optimization process has nothing to do with long-distance feedback, how
can you guarantee that the learned model can effectively capture long distances?

3 Mathematical Formulas
The above text provided a general analysis. Next, we will analyze specific RNNs. Before that,
we need to review several mathematical formulas that we will use multiple times in the following
derivations:

tanh x = 2σ(2x) − 1

σ(x) = 1
2

(
tanh x

2 + 1
)

(tanh x)′ = 1 − tanh2 x

σ′(x) = σ(x) (1 − σ(x))

(4)

where σ(x) = 1/(1 + e−x) is the sigmoid function. These formulas essentially state one thing:
tanh x and σ(x) are basically equivalent, and their derivatives can both be expressed in terms
of themselves.

2

4 Simple RNN Analysis
First to appear is the primitive Simple RNN. Its formula is:

ht = tanh (Wxt + Uht−1 + b) (5)

where W, U, b are parameters to be optimized. Seeing this, a natural question arises: why use
tanh as the activation function instead of the more popular ReLU? This is a good question,
and we will answer it shortly.

From the previous discussion, we know that whether the gradient vanishes or explodes
mainly depends on

∣∣∣ ∂ht
∂ht−1

∣∣∣, so we calculate:

∂ht

∂ht−1
=

(
1 − h2

t

)
U (6)

Since we cannot determine the range of U ,
∣∣∣ ∂ht

∂ht−1

∣∣∣ could be less than 1 or greater than 1, so
the risk of gradient vanishing/exploding exists. Interestingly, if |U | is very large, then ht will
correspondingly be very close to 1 or -1, which in turn makes (1 − h2

t)U smaller. In fact, it can
be strictly proven that if ht−1 ̸= 0 is fixed, then (1 − h2

t)U as a function of U is bounded. This
means that no matter what U is, it will not exceed a fixed constant.

Thus, we can answer why tanh is used as the activation function: because after using
tanh, the corresponding gradient ∂ht

∂ht−1
is bounded. Although this bound might not be 1, the

probability of a bounded quantity not exceeding 1 is generally higher than that of an unbounded
quantity, thus the risk of gradient explosion is lower. In contrast, if ReLU is used, its derivative
on the positive axis is always 1, making ∂ht

∂ht−1
= U unbounded, which increases the risk of

gradient explosion.
Therefore, the main purpose of using tanh instead of ReLU in RNNs is to alleviate the

risk of gradient explosion. Of course, this alleviation is relative; there is still a possibility of
explosion even with tanh. In fact, the most fundamental method for dealing with gradient
explosion is parameter clipping or gradient clipping. In other words, if I manually clip U to the
range [−1, 1], can’t I guarantee that the gradient won’t explode? Some readers might then ask:
since clipping can solve the problem, can we use ReLU? Indeed, with good initialization and
parameter/gradient clipping schemes, ReLU-based RNNs can also be trained well. However, we
still prefer tanh because its corresponding ∂ht

∂ht−1
is bounded, meaning we don’t have to clip too

aggressively, which might allow for better model fitting capability.

5 LSTM Results
Of course, while clipping works, it is ultimately a last resort. Moreover, clipping only solves the
gradient explosion problem and cannot solve gradient vanishing. If we can solve this problem
through model design, that would naturally be best. The legendary LSTM is such a design. Is
this true? Let’s analyze it.

The update formulas for LSTM are quite complex:

ft = σ (Wf xt + Uf ht−1 + bf)
it = σ (Wixt + Uiht−1 + bi)
ot = σ (Woxt + Uoht−1 + bo)
ĉt = tanh (Wcxt + Ucht−1 + bc)
ct = ft ◦ ct−1 + it ◦ ĉt

ht = ot ◦ tanh (ct)

(7)

3

We can calculate ∂ht
∂ht−1

as before, but since ht = ot ◦ tanh (ct), analyzing ct is equivalent to
analyzing ht, and calculating ∂ct

∂ct−1
is simpler.

Assuming the 1D case, we have:

∂ct

∂ct−1
= ft + ct−1

∂ft

∂ct−1
+ ĉt

∂it

∂ct−1
+ it

∂ĉt

∂ct−1
(8)

The first term ft is the "forget gate". As discussed below, the other three terms are usually
secondary, making ft the "main term". Since ft ∈ [0, 1], the risk of gradient explosion is small.
Whether the gradient vanishes depends on whether ft is close to 1. There is a self-consistent
conclusion: if the task relies on historical information, ft will be close to 1, and the historical
gradient will not vanish; if ft is close to 0, the task does not rely on history, so gradient vanishing
is acceptable.

Now, let’s see if the other three terms are indeed secondary. Each is a product of a term
and a partial derivative of a σ or tanh function. For the second term, substituting ht−1 =
ot−1 tanh (ct−1):

ct−1
∂ft

∂ct−1
= ft (1 − ft) ot−1

(
1 − tanh2 ct−1

)
ct−1Uf (9)

Since ft, 1 − ft, ot−1 are in [0, 1] and |(1 − tanh2 ct−1)ct−1| < 0.45, this term is Uf multiplied by
four "gates", making it very small unless initialization is poor. Compared to the simple RNN
gradient (6), it has three more gates.

The other two terms are similar:

ĉt
∂it

∂ct−1
= it (1 − it) ot−1

(
1 − tanh2 ct−1

)
ĉtUi

it
∂ĉt

∂ct−1
=

(
1 − ĉ2

t

)
ot−1

(
1 − tanh2 ct−1

)
itUc

(10)

These terms also contain more "gates" and are compressed further. Thus, ft dominates. Its
range [0, 1] ensures low explosion risk, and its value reflects historical dependency, naturally
preserving gradients. Thus, LSTM alleviates both problems.

6 A Look at GRU
Finally, let’s analyze GRU. Its operations are:

zt = σ (Wzxt + Uzht−1 + bz)
rt = σ (Wrxt + Urht−1 + br)
ĥt = tanh (Whxt + Uh(rt ◦ ht−1) + bc)
ht = (1 − zt) ◦ ht−1 + zt ◦ ĥt

(11)

An extreme version combines rt and zt:

rt = σ (Wrxt + Urht−1 + br)
ĥt = tanh (Whxt + Uh(rt ◦ ht−1) + bc)
ht = (1 − rt) ◦ ht−1 + rt ◦ ĥt

(12)

In GRU, ht stays in [−1, 1] because it is a weighted average of ht−1 and ĥt ∈ [−1, 1]. Calculating
the derivative:

∂ht

∂ht−1
=1 − zt − zt(1 − zt)ht−1Uz + zt(1 − zt)ĥtUz

+
(
1 − ĥ2

t

)
rt (1 + (1 − rt)ht−1Ur) ztUh

(13)

4

The results are similar to LSTM, with 1 − zt as the main term. However, the other terms
have fewer gates than LSTM, making them potentially larger and the gradient more unstable.
Specifically, the rt ◦ ht−1 operation introduces a gate rt but also a term (1 + (1 − rt)ht−1Ur).
Overall, GRU might be more unstable and more dependent on good initialization than LSTM.

To simplify LSTM while maintaining gradient friendliness, a better approach might be:

zt = σ (Wzxt + Uzht−1 + bz)
rt = σ (Wrxt + Urht−1 + br)
ĉt = tanh (Whxt + Uhht−1 + bc)
ct = (1 − zt) ◦ ct−1 + zt ◦ ĉt

ht = rt ◦ ct

(14)

7 Summary
This article discussed the gradient vanishing/exploding problem in RNNs by analyzing the
boundedness of gradient functions and the number of gates in RNN, LSTM, and GRU. This is
a personal analysis; please feel free to correct any errors.

Reprinting please include the original address: https://kexue.fm/archives/7888
For more details on reprinting, please refer to: "Scientific Space FAQ"

5

https://kexue.fm/archives/7888
https://kexue.fm/archives/6508

	RNN and its Gradient
	Vanishing or Exploding?
	Mathematical Formulas
	Simple RNN Analysis
	LSTM Results
	A Look at GRU
	Summary

