
Generative Diffusion Models (11): Unified Diffusion Model
(Application)

Jianlin Su

September 21, 2022

In "Generative Diffusion Models (10): Unified Diffusion Model (Theory)", I claimed to have
constructed a Unified Diffusion Model (UDM) framework that allows for more general diffusion
methods and data types. Can the UDM framework actually achieve its intended purpose? This
article demonstrates its generality through several specific examples.

1 Framework Review
First, UDM constructs the forward process by choosing a noise distribution q(ε) and a trans-
formation F :

xt = F t(x0, ε), ε ∼ q(ε) (1)

Then, sampling for the reverse process xt−1 ∼ p(xt−1|xt) is achieved through the following
decomposition:

x̂0 ∼ p(x0|xt) & xt−1 ∼ p(xt−1|xt, x0 = x̂0) (2)

Where p(x0|xt) is the probability of estimating x0 given xt, generally modeled using a simple
distribution q(x0|xt) as an approximation. The training objective is essentially − log q(x0|xt)
or a simple variant thereof. When x0 is continuous data, q(x0|xt) is typically chosen as a
conditional normal distribution; when x0 is discrete data, q(x0|xt) can be an autoregressive or
non-autoregressive model.

As for the baseline choice for p(xt−1|xt, x0), it is:

p(xt−1|xt, x0) = p(xt−1|x0) ⇔ xt−1 = F t−1(x0, ε) (3)

Starting from this baseline, different optimization results can be obtained under different con-
ditions. If F t(x0, ε) is invertible with respect to ε, then we can solve for ε = F−1

t (x0, xt),
leading to a better deterministic sampling method:

xt−1 = F t−1(x0, F−1
t (x0, xt)) (4)

Furthermore, if q(ε) is a standard normal distribution, we can obtain:

xt−1 = F t−1(x0,
√

1 − σ̃2
t F−1

t (x0, xt) + σ̃tε) (5)

2 Hot Diffusion
In this section, we prove that "Hot Diffusion Models" are a special case of UDM. Here, Hot
Diffusion refers to the mainstream diffusion models introduced previously, such as DDPM and
DDIM. This term originates from the "Cold Diffusion" paper discussed below.

1

https://kexue.fm/archives/9262
https://kexue.fm/archives/9119
https://kexue.fm/archives/9181

Mainstream diffusion models handle continuous data and construct the forward process
using additive Gaussian noise:

xt = ᾱtx0 + β̄tε, ε ∼ N (0, I) (6)

The choice for q(x0|xt) is the normal distribution N (x0; µ̄(xt), σ̄2
t I). Generally, σ̄t is not treated

as a trainable parameter, so after omitting constant terms, we have:

− log q(x0|xt) = 1
2σ̄2

t

∥x0 − µ̄(xt)∥2 (7)

Further introducing the parameterization µ̄(xt) = 1
ᾱt

(
xt − β̄tϵθ(xt, t)

)
and combining it with

xt = ᾱtx0 + β̄tε, we get:

− log q(x0|xt) = β̄2
t

2σ̄2
t ᾱ2

t

∥∥∥ε − ϵθ(ᾱtx0 + β̄tε, t)
∥∥∥2

(8)

Experiments show that omitting the preceding coefficients yields better results, so the final
training objective is generally ∥ε − ϵθ(ᾱtx0 + β̄tε, t)∥2. Regarding the choice of σ̄t during the
sampling process, one can refer to "Generative Diffusion Models (7): Optimal Diffusion Vari-
ance Estimation (Part 1)" and "Generative Diffusion Models (8): Optimal Diffusion Variance
Estimation (Part 2)".

Finally, regarding p(xt−1|xt, x0), we have:

xt−1 = ᾱt−1x0 + β̄t−1ε

∼ ᾱt−1x0 +
√

β̄2
t−1 − σ2

t ε1 + σtε2
, ε, ε1, ε2 ∼ N (0, I) (9)

Solving for ε from xt = ᾱtx0 + β̄tε gives ε = (xt − ᾱtx0)/ β̄t. Replacing ε1, we eventually
obtain the general reverse process for p(xt−1|xt, x0) as:

xt−1 = ᾱt−1x0 +
√

β̄2
t−1 − σ2

t

xt − ᾱtx0

β̄t

+ σtε, ε ∼ N (0, I) (10)

And x̂0 ∼ p(x0|xt) implies:

x̂0 = µ̄(xt) + σ̄tε = 1
ᾱt

(
xt − β̄tϵθ(xt, t)

)
+ σ̄tε (11)

Combining the two equations above yields the reverse process of the most general mainstream
diffusion model framework. DDPM takes σ̄t = 0, σt = β̄t−1βt

β̄t
, DDIM takes σ̄t = 0, σt = 0, and

Analytical-DPM re-estimates the optimal non-zero σ̄t.

3 Cold Diffusion
Next, we prove that "Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise" is
also a special case of UDM. Cold Diffusion also handles continuous data. As seen from the title,
it focuses on using arbitrary (noise-free) transformations to construct the forward process. To
the best of my knowledge, this is the first paper to attempt a general forward process. UDM
was heavily inspired by it during its construction, and I would like to express my gratitude to
the original authors.

Cold Diffusion constructs the forward process through a deterministic transformation xt =
F t(x0). To facilitate subsequent analysis, we introduce a more general forward process:

xt = F t(x0) + σε, ε ∼ q(ε) (12)

2

https://kexue.fm/archives/9245
https://kexue.fm/archives/9245
https://kexue.fm/archives/9246
https://kexue.fm/archives/9246
https://papers.cool/arxiv/2208.09392

The transformation F can be any form of degradation of the original data, such as blurring,
masking, or pooling for images. If a deterministic transformation is required, we can simply let
σ → 0 after the fact.

Next, the choice for q(x0|xt) is a normal distribution measured by the l1 norm:

q(x0|xt) = 1
Z(τ)

∫
e− ∥x0−Gt(xt)∥1/τ dx0 (13)

where Z(τ) is the normalization factor. Taking τ as a fixed value, after removing constant
terms, we have − log q(x0|xt) ∝ ∥x0 − Gt(xt)∥1. Combined with xt = F t(x0), the training
objective is to minimize:

∥x0 − Gt(F t(x0))∥1 (14)

In the reverse process, Cold Diffusion directly ignores the variance of q(x0|xt) (i.e., letting
τ → 0), resulting in x̂0 = Gt(xt). If p(xt−1|xt, x0) takes the baseline choice p(xt−1|x0), i.e.,
xt−1 = F t−1(x0) + σε, then substituting x̂0 and taking the limit σ → 0 yields:

x̂0 = Gt(xt), xt−1 = F t−1(x̂0) (15)

This is the "Naive Sampling" from the original paper. If we solve for ε = (xt − F t(x0))/ σ from
xt = F t(x0) + σε and substitute it into xt−1 = F t−1(x0) + σε, we get:

x̂0 = Gt(xt), xt−1 = xt + F t−1(x̂0) − F t(x̂0) (16)

This is the "Improved Sampling" from the original paper.
Overall, Cold Diffusion was the first to successfully implement a forward process with general

transformations. However, because it emphasizes "Without Noise" too much, it has theoretical
flaws that are difficult to overcome. For example, for image data of size w × w × 3, if Cold
Diffusion uses a blurring operation for the forward process, the final result might be equiva-
lent to a 3-dimensional vector. Since Cold Diffusion’s reverse process is also deterministic, it
means Cold Diffusion transforms a 3w2-dimensional image into 3 dimensions through a deter-
ministic transformation and then reconstructs it back to 3w2 dimensions. This intermediate
process inevitably involves severe information loss, which limits the clarity of reconstruction
and, consequently, the clarity of generation.

To solve this problem, one cannot reject the existence of noise in the forward or reverse
processes. Noise implies uncertainty, uncertainty implies "one-to-many," and "one-to-many"
allows for a "many-to-one" forward process, which permits information loss. In fact, Cold
Diffusion itself realized that a 3-dimensional vector is insufficient to generate complete 3w2-
dimensional data; in the generation process, it actually adds slight 3w2-dimensional random
noise to this 3-dimensional vector. Experiments showed that this operation improved generation
results. This operation is roughly equivalent to a forward process where σ > 0.

4 Editing Models
The two examples above both deal with continuous data. As we mentioned, UDM in principle
does not restrict the data type. In this section, we introduce a discrete example, showing that
text generation models based on editing operations can essentially be seen as special cases of
UDM.

For simplicity, let’s consider the generation of fixed-length sentences of length l, such as
five-character or seven-character quatrains. Variable-length sentences are possible but slightly
more complex in detail. We define the forward process xt = F t(x0, ε) as "random replacement":

Randomly select t tokens in the sentence and replace them with other random tokens.

3

where t ≤ l. When t = l, xt is a sequence of l completely random tokens.
In this case, q(x0|xt) is a model that predicts the original sequence from the randomly re-

placed sequence, using either an autoregressive or non-autoregressive model, with cross-entropy
as the loss function. Note that F t(x0, ε) is necessarily non-invertible with respect to the noise
(i.e., given x0 and xt, there is more than one way to transform x0 into xt). Therefore, we can
only use the baseline choice p(xt−1|xt, x0) = p(xt−1|x0), which means the generation process
is:

1. Randomly select l tokens as the initial xl;

2. Predict x̂0 from q(x0|xt);

3. Randomly select t − 1 tokens from x̂0 and replace them with other random tokens to
obtain xt−1;

4. Repeat steps 2 and 3 until the final x0 is obtained.

However, the performance of such an algorithm will not be very good because the predic-
tion from step 2 is often "ruined" by the random replacement in step 3, feeling like "one step
forward, two steps back." To improve performance, a better sampling scheme is needed, which
requires F t(x0, ε) to be invertible with respect to the noise—meaning that given x0 and xt,
the transformation can be uniquely identified. To this end, we define the forward process as:

Randomly select t tokens in the sentence and replace them with different tokens.

The difference here is that during random replacement, the original token must be replaced
by a token that is different from the original. Without this restriction, it might be replaced
by the same token. With this constraint, we can directly compare the differences between x0
and xt to see what was modified, thereby changing the random replacement in step 3 to a
transformation from x̂0 to xt:

1. Randomly select l tokens as the initial xl;

2. Predict x̂0 from q(x0|xt), requiring that x̂0 and xt have t different tokens (this is easier
to implement with a non-autoregressive model);

3. Randomly select one of the tokens in xt that is different from x̂0, and replace it with the
token at the corresponding position in x̂0 to obtain xt−1;

4. Repeat steps 2 and 3 until the final x0 is obtained.

In this way, the valid parts of each prediction x̂0 (the parts where x̂0 matches xt) are
preserved, and xt−1 only modifies one token compared to xt, making the generation process
a stable, progressive generation. The difference from a standard autoregressive model is the
removal of the left-to-right generation constraint.

5 Masking Models
If the above model is still vague, here is another simple example to help understanding. Again,
consider the generation of fixed-length sentences of length l. We define the forward process
xt = F t(x0, ε) as "random masking":

Randomly select t tokens in the sentence and replace them with [MASK].

4

where t ≤ l. When t = l, xt consists of l [MASK] tokens.
In this case, q(x0|xt) is a model that predicts the original sequence from a sequence with

[MASK] tokens, generally implemented using a BERT-like MLM model (non-autoregressive),
with cross-entropy as the loss function. The baseline generation process is:

1. Use l [MASK] tokens as the initial xl;

2. Sample x̂0 from q(x0|xt);

3. Randomly select t − 1 tokens from x̂0 and replace them with [MASK] to obtain xt−1;

4. Repeat steps 2 and 3 until the final x0 is obtained.

Note that in this case, F t(x0, ε) is invertible with respect to the noise; we can clearly see
from x0 and xt which tokens were replaced by [MASK]. Therefore, we can construct an improved
generation process:

1. Use l [MASK] tokens as the initial xl;

2. Sample x̂0 from q(x0|xt), noting that we only need to sample tokens that were originally
[MASK]; non-[MASK] tokens remain unchanged;

3. Randomly select t−1 positions from the t [MASK] positions in the original xt, and replace
the tokens at these positions in x̂0 with [MASK] to obtain xt−1;

4. Repeat steps 2 and 3 until the final x0 is obtained.

Of course, steps 2 and 3 can be merged into a more direct step:

2 & 3. Randomly select 1 position from the t [MASK] positions in xt, and sample
a token to replace it according to the probability at that position from q(x0|xt),
resulting in xt−1.

This is almost identical to Gibbs sampling based on an MLM model (refer to "Searching for
Text (3): Text Sampling based on BERT"). From the "Editing Model" and "Masking Model"
examples, we can see that many "progressive generation" models can be reformulated using
the UDM framework. Conversely, any progressive generation method we can think of can be
attempted to be formulated using the UDM framework.

6 Encoding Models
The forward processes we discussed earlier were all without trainable parameters, meaning they
were pre-designed procedures. However, this is not strictly necessary. We can generalize the
diffusion process of DDPM as:

xt = ᾱtF(x0) + β̄tε, ε ∼ N (0, I) (17)

where F(x0) is an encoding model for x0, which can have trainable parameters. The training
objective then becomes:

− log q(x0|xt) = − log q(x0|ᾱtF(x0) + β̄tε) (18)

except that F also has trainable parameters. The reverse process is similar, except that after
sampling x̂0 ∼ q(x0|x1), we directly return x̂0. Specifically, because of the additional encoding
model F , the input x0 can be either discrete or continuous data. This provides a method similar
to VAE for encoding data distributions into a normal distribution of latent variables.

5

https://kexue.fm/archives/8119
https://kexue.fm/archives/8119

7 Summary
This article primarily applies the Unified Diffusion Model (UDM) framework constructed in the
previous post to derive several specific examples, including mainstream diffusion models, Cold
Diffusion, text editing generation, and encoding models.

If you wish to reprint this article, please include the original address: https://kexue.fm/archives/9271
For more details on reprinting/citation, please refer to: "Scientific Space FAQ"

6

https://kexue.fm/archives/9271
https://kexue.fm/archives/6508

	Framework Review
	Hot Diffusion
	Cold Diffusion
	Editing Models
	Masking Models
	Encoding Models
	Summary

