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Wasserstein distance (hereinafter referred to as "W-distance") is a distance function based
on the idea of optimal transport to measure the degree of difference between two probability
distributions. I have previously introduced it in blog posts such as "From Wasserstein Distance
and Duality Theory to WGAN". For many readers, the first time they heard of W-distance was
because of WGAN, which was released in 2017. It pioneered a new branch of understanding
GANs from the perspective of optimal transport and elevated the status of optimal transport
theory in machine learning. For a long time, GANs were the "main force" in the field of
generative models, until the sudden emergence of diffusion models in the last two years, which
caused GANs’ popularity to decline, though they remain powerful generative models in their
own right.

Formally, the differences between diffusion models and GANs are quite obvious, so research
on them has been relatively independent. However, a paper released at the end of last year,
"Score-based Generative Modeling Secretly Minimizes the Wasserstein Distance", broke this
barrier: it proved that the score matching loss of diffusion models can be written as an upper
bound of the W-distance. This means that to some extent, minimizing the loss function of a
diffusion model is, in fact, the same as WGAN—both are minimizing the W-distance between
two distributions.

1 Analysis of the Conclusion
Specifically, the results of the original paper are directed at the SDE-style diffusion models
introduced in "Generative Diffusion Models Part 5: SDE Perspective of the General Framework".
Its core conclusion is the inequality (where It is a non-negative function of t; we will introduce
its specific meaning in detail later):

W2[p0, q0] ≤
∫ T

0
g2

t It

(
Ext∼pt(xt)

[
∥∇xt log p(xt) − sθ(xt, t)∥2

])1/2
dt + IT W2[pT , qT ] (1)

How should we understand this inequality? First, a diffusion model can be understood as a
movement process of an SDE from t = T to t = 0. pT and qT on the far right are the random
sampling distributions at time T . pT is usually a standard normal distribution, and in practical
applications, we generally have qT = pT , so W2[pT , qT ] = 0. The reason the original paper
explicitly writes it out is just to provide the most general theoretical result.

Next, p0 on the left is the distribution of values at time t = 0 obtained by solving the reverse
SDE:

dxt =
[
f t(xt) − g2

t ∇xt log pt(xt)
]

dt + gtdw (2)

starting from random points sampled from pT . It is actually the data distribution to be gener-
ated. Meanwhile, q0 is the distribution of values at time t = 0 obtained by solving the SDE:

dxt =
[
f t(xt) − g2

t sθ(xt, t)
]

dt + gtdw (3)
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starting from random points sampled from qT , where sθ(xt, t) is the neural network approxima-
tion of ∇xt log pt(xt). Therefore, q0 is actually the data distribution generated by the diffusion
model. Thus, the meaning of W2[p0, q0] is the W-distance between the data distribution and
the generated distribution.

Finally, the remaining integral term has a key part:

Ext∼pt(xt)
[
∥∇xt log p(xt) − sθ(xt, t)∥2

]
(4)

This is exactly the "score matching" loss of the diffusion model. Therefore, when we use the
score matching loss to train a diffusion model, we are actually indirectly minimizing the W-
distance between the data distribution and the generated distribution. Unlike WGAN, which
optimizes the W1[p0, q0] distance, here it is W2[p0, q0].

Note: To be precise, Equation (4) is not yet the loss function of the diffusion model.
The loss function of the diffusion model should be "conditional score matching." The
relationship between it and score matching is:

Ext∼pt(xt)
[
∥∇xt log pt(xt) − sθ(xt, t)∥2

]
=Ext∼pt(xt)

[∥∥∥Ex0∼pt(x0|xt) [∇xt log pt(xt|x0)] − sθ(xt, t)
∥∥∥2
]

≤Ext∼pt(xt)Ex0∼pt(x0|xt)
[
∥∇xt log pt(xt|x0) − sθ(xt, t)∥2

]
=Ex0∼p0(x0),xt∼pt(xt|x0)

[
∥∇xt log pt(xt|x0) − sθ(xt, t)∥2

]
(5)

The final result is the "conditional score matching" loss function of the diffusion
model. The first equality is due to the identity ∇xt log pt(xt) = Ex0∼pt(x0|xt) [∇xt log pt(xt|x0)].
The second inequality is due to the generalization of the mean square inequality or
Jensen’s inequality. The third equality is Bayes’ theorem. In other words, condi-
tional score matching is an upper bound of score matching, and therefore also an
upper bound of the W-distance.

From Equation (1), we can also simply understand why the objective function of the diffusion
model discards the coefficient in front of the norm. Because the W-distance is a good measure of
probability distributions, and g2

t It on the right side of Equation (1) is a monotonically increasing
function of t, this means we should appropriately increase the score matching loss when t is
small. In "Generative Diffusion Models Part 5: SDE Perspective", we derived the final form of
score matching as:

1
β̄2

t

Ex0∼p̃(x0),ε∼N (0,I)

[∥∥∥ϵθ(ᾱtx0 + β̄tε, t) − ε
∥∥∥2
]

(6)

Discarding the coefficient 1
β̄2

t
is equivalent to multiplying by β̄2

t , and β̄2
t is also a monotonically

increasing function of t. That is to say, one can simply consider that discarding the coefficient
makes the training objective closer to the W-distance between the two distributions.

2 Preparation
Although the original paper provides the proof process for inequality (1), it involves a significant
amount of knowledge related to optimal transport, such as continuity equations and gradient
flows. In particular, a theorem it cites without proof is located in Chapter 8 of a monograph
on gradient flows or Chapter 5 of another monograph on optimal transport, which makes the
reading difficulty too high for me. After some attempts, I finally completed my own proof of
(part of) inequality (1) last week. It only requires the definition of W-distance, basic differential
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equations, and the Cauchy-Schwarz inequality. Compared to the original paper’s proof, the
difficulty of understanding should be significantly reduced. After several days of refinement, the
proof process is as follows.

Before starting the proof, let’s prepare by organizing some basic concepts and conclusions
that will be used. First is the W-distance, defined as:

Wρ[p, q] =
(

inf
γ∈Π[p,q]

∫∫
γ(x, y)∥x − y∥ρdxdy

)1/ρ

(7)

where Π[p, q] refers to all joint probability density functions with p and q as marginal distribu-
tions, which describes a specific transport plan. This article only considers ρ = 2, as only this
case is convenient for subsequent derivation. Note that the definition of W-distance includes an
infimum operation inf, which means that for any γ ∈ Π[p, q] we can write down, we have:

W2[p, q] ≤
(∫∫

γ(x, y)∥x − y∥2dxdy

)1/2
(8)

This is the core idea of the proof I provide. The relaxation in the proof process mainly uses the
Cauchy-Schwarz inequality:

Vector version: x · y ≤ ∥x∥∥y∥

Expectation version: Ex [f(x)g(x)] ≤
(
Ex

[
f2(x)

])1/2 (
Ex

[
g2(x)

])1/2 (9)

In the proof process, we assume that the function gt(x) satisfies the "one-sided Lipschitz con-
straint," defined as:

(gt(x) − gt(y)) · (x − y) ≤ Lt∥x − y∥2 (10)

It can be proven that this is weaker than the common Lipschitz constraint (refer to "Lipschitz
Constraint in Deep Learning: Generalization and Generative Models"), meaning that if a func-
tion gt(x) satisfies the Lipschitz constraint, it must satisfy the one-sided Lipschitz constraint.

3 A Simple Trial
Inequality (1) is too general. Attempting to analyze the generalized result right away is not
conducive to our thinking and understanding. Therefore, let’s simplify the problem first to
see if we can prove a slightly weaker result. How to simplify? First, inequality (1) considers
the difference in the initial distribution (note: the diffusion model is an evolution process from
t = T to t = 0, so t = T is the initial time and t = 0 is the terminal time). Here, we first
consider the same initial distribution. Additionally, the original reverse equation (2) is an SDE;
here, we first consider a deterministic ODE.

Specifically, we consider starting from the same distribution q(z) and sampling z as the
initial value at time T , then evolving along two different ODEs:

dxt

dt
= f t(xt),

dyt

dt
= gt(yt) (11)

Let the distribution of xt at time t be pt and the distribution of yt be qt. We attempt to
estimate an upper bound for W2[p0, q0].

We know that xt and yt both evolve from the same initial value z through their respective
ODEs, so they are actually deterministic functions of z. More accurate notation would be xt(z)
and yt(z); for simplicity, we omit z. This means that the mapping xt ↔ yt corresponding to the
same z constitutes a correspondence (transport plan) between samples of pt and qt, as shown
in the figure below:
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Figure 1: Schematic diagram of the approximate optimal transport plan

Thus, according to Equation (8), we can write:

W2
2 [pt, qt] ≤ Ez

[
∥xt − yt∥2

]
≜ W̃2

2 [pt, qt] (12)

Next, we relax W̃2
2 [pt, qt]. To relate it to f t(xt) and gt(yt), we take its derivative:

±
d
(
W̃2

2 [pt, qt]
)

dt
= ± 2Ez

[
(xt − yt) ·

(
dxt

dt
− dyt

dt

)]
= ± 2Ez [(xt − yt) · (f t(xt) − gt(yt))]
= ± 2Ez [(xt − yt) · (f t(xt) − gt(xt))] ± 2Ez [(xt − yt) · (gt(xt) − gt(yt))]

≤ 2Ez [∥xt − yt∥∥f t(xt) − gt(xt)∥] + 2Ez

[
Lt∥xt − yt∥2

]
≤ 2

(
Ez

[
∥xt − yt∥2

])1/2 (
Ez

[
∥f t(xt) − gt(xt)∥2

])1/2
+ 2LtEz

[
∥xt − yt∥2

]
= 2W̃2[pt, qt]

(
Ez

[
∥f t(xt) − gt(xt)∥2

])1/2
+ 2LtW̃2

2 [pt, qt]
(13)

The first inequality uses the vector version of the Cauchy-Schwarz inequality and the one-sided
Lipschitz constraint assumption (10). The second inequality uses the expectation version of
the Cauchy-Schwarz inequality. The ± means that the resulting inequality holds regardless
of whether we take + or −. The following derivation only uses the − side. Combining with
(w2)′ = 2ww′, we get:

−dW̃2[pt, qt]
dt

≤
(
Ez

[
∥f t(xt) − gt(xt)∥2

])1/2
+ LtW̃2[pt, qt] (14)

Using the method of variation of constants, let W̃2[pt, qt] = Ct exp
(∫ T

t Lsds
)
. Substituting this

into the above equation gives:

−dCt

dt
≤ exp

(
−
∫ T

t
Lsds

)(
Ez

[
∥f t(xt) − gt(xt)∥2

])1/2
(15)

Integrating both sides over [0, T ] and combining with CT = 0 (since the two distributions are
equal at the initial time, the distance is 0), we get:

C0 ≤
∫ T

0
exp

(
−
∫ T

t
Lsds

)(
Ez

[
∥f t(xt) − gt(xt)∥2

])1/2
dt (16)
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Thus:
W̃2[p0, q0] ≤ C0 exp

(∫ T

0
Lsds

)
=
∫ T

0
It

(
Ez

[
∥f t(xt) − gt(xt)∥2

])1/2
dt (17)

where It = exp
(∫ t

0 Lsds
)
. According to Equation (12), this is also an upper bound for W2[p0, q0].

Finally, since the expression for the expectation is only a function of xt, and xt is a deterministic
function of z, the expectation with respect to z is equivalent to the expectation directly with
respect to xt:

W2[p0, q0] ≤
∫ T

0
It

(
Ext∼pt(xt)

[
∥f t(xt) − gt(xt)∥2

])1/2
dt (18)

4 Pressing On
In fact, the simplified inequality (18) is not fundamentally different from the more general (1).
Its derivation process already contains the general idea for deriving the complete result. Below,
we complete the remaining derivation.

First, we generalize inequality (18) to scenarios with different initial distributions. Suppose
the two initial distributions are pT (z1) and qT (z2). We sample the initial value from pT (z1) to
evolve xt, and sample the initial value from qT (z2) to evolve yt. Thus, xt and yt are functions
of z1 and z2 respectively, rather than functions of the same z as before. Therefore, we cannot
directly construct a transport plan. So, we also need a correspondence (transport plan) between
z1 and z2. We choose it to be an optimal transport plan γ∗(z1, z2) between pT (z1) and qT (z2).
Thus, we can write a result similar to Equation (12):

W2
2 [pt, qt] ≤ Ez1,z2∼γ∗(z1,z2)

[
∥xt − yt∥2

]
≜ W̃2

2 [pt, qt] (19)

Due to the consistency of the definition, the relaxation process (13) still holds, except that
the expectation Ez is replaced by Ez1,z2 . Therefore, inequalities (14) and (15) also hold. The
difference is that when integrating both sides of (15) over [0, T ], we no longer have CT = 0.
Instead, according to the definition, we have CT = W̃2[pT , qT ] = W2[pT , qT ]. So, the final result
is:

W2[p0, q0] ≤
∫ T

0
It

(
Ext∼pt(xt)

[
∥f t(xt) − gt(xt)∥2

])1/2
dt + IT W2[pT , qT ] (20)

Finally, we return to the diffusion model. In "Generative Diffusion Models Part 6: ODE
Perspective", we derived that the same forward diffusion process actually corresponds to a family
of reverse processes:

dx =
(

f t(x) − 1
2(g2

t + σ2
t )∇x log pt(x)

)
dt + σtdw (21)

where σt is a standard deviation function that can be freely chosen. When σt = gt, it becomes
Equation (2). Since we analyzed ODEs above, let’s first consider the case where σt = 0. In this
case, the result (20) is still applicable, but we replace f t(xt) with f t(xt) − 1

2g2
t ∇xt log pt(xt)

and gt(xt) with f t(xt) − 1
2g2

t sθ(xt, t). Substituting these into Equation (20) yields the con-
clusion (1) presented at the beginning of the article. Of course, don’t forget the one-sided
Lipschitz constraint assumption (10) we made for gt(xt) during the derivation. Now we can
make assumptions for f t(xt) and sθ(xt, t) respectively; these details will not be expanded upon.

5 A Difficult Conclusion
Following the procedure, we should continue to complete the final proof for σt ̸= 0. However,
unfortunately, the logic of this article cannot fully prove the SDE case. Below is my analysis
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process. In fact, for most readers, understanding the ODE example in the previous section is
enough to glimpse the essence of Equation (20). The complete details are not overly important.

For simplicity, let’s take (2) as an example. A more general (21) can be analyzed similarly.
We need to estimate the difference in the evolution trajectory distributions of the following two
SDEs: 

dxt =
[
f t(xt) − g2

t ∇xt log pt(xt)
]

dt + gtdw

dyt =
[
f t(yt) − g2

t sθ(yt, t)
]

dt + gtdw
(22)

That is, how much the final distribution is affected by replacing the accurate ∇xt log pt(xt) with
the approximate sθ(yt, t). My proof idea is also to transform it into an ODE and then use the
previous proof process. First, according to Equation (21), we know the ODE corresponding to
the first SDE is:

dxt =
[
f t(xt) − g2

t ∇xt log pt(xt)
]

dt + gtdw

⇓

dxt =
[
f t(xt) − 1

2g2
t ∇xt log pt(xt)

]
dt

(23)

As for the derivation of the ODE corresponding to the second SDE, it requires some skill. It
first needs to be changed into the form of −g2

t ∇yt
log qt(yt), and then Equation (21) is used:

dyt =
[
f t(yt) − g2

t sθ(yt, t)
]

dt + gtdw

⇓

dyt =
[

f t(yt) − g2
t sθ(yt, t) + g2

t ∇yt
log qt(yt)︸ ︷︷ ︸

treated as a whole

−g2
t ∇yt

log qt(yt)
]
dt + gtdw

⇓

dyt =
[
f t(yt) − g2

t sθ(yt, t) + g2
t ∇yt

log qt(yt) − 1
2g2

t ∇yt
log qt(yt)

]
dt

⇓

dyt =
[
f t(yt) − g2

t sθ(yt, t) + 1
2g2

t ∇yt
log qt(yt)

]
dt

(24)

Repeating the relaxation process (13) for these two ODEs (taking the negative sign for ±), the
main difference is an extra term:

−1
2g2

t Ez
[
(xt − yt) · (∇xt log pt(xt) − ∇yt

log qt(yt))
]

(25)

If this term is less than or equal to 0, then the relaxation process (13) still holds, and all
subsequent results also hold, with the final conclusion taking the same form as Equation (20).

So, the remaining question is whether we can prove:

Ez
[
(xt − yt) · (∇xt log pt(xt) − ∇yt

log qt(yt))
]

≥ 0 (26)

Unfortunately, counterexamples can be given to show that it generally does not hold. A similar
term appeared in the proof process of the original paper, but the distribution for the expectation
was not z, but the optimal transport distribution of xt and yt. Under this premise, the original
paper directly throws out conclusions from two references as lemmas and completes the proof in
a few lines. It must be said that the authors of the original paper are very familiar with optimal
transport content, "picking up" various literature conclusions with ease. It is just difficult for a
novice reader like me; wanting to understand it thoroughly is hard, so I can only stop here.

In particular, we cannot make a one-sided Lipschitz constraint assumption for ∇xt log pt(xt)
or ∇yt

log qt(yt), because it is easy to find distributions whose log-gradients do not satisfy
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the one-sided Lipschitz constraint. Therefore, to prove this inequality, one can only refer to
the original paper’s idea of using the properties of the distribution itself, without imposing
additional assumptions.

6 Summary
This article introduces a new theoretical result showing that the score matching loss of diffusion
models can be written as an upper bound of the W-distance, and provides a partial proof. This
result means that, to some extent, diffusion models and WGAN share the same optimization
goal—diffusion models are also secretly optimizing the W-distance!

Original article address: https://kexue.fm/archives/9467
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