Generative Diffusion Models (Part 27): Step Size as Conditional
Input

Jianlin Su

December 15, 2024

In this article, we once again focus on the sampling acceleration of diffusion models. As
is well known, there are two main approaches to accelerating diffusion model sampling: one
is to develop more efficient solvers, and the other is post-hoc distillation. However, according
to the author’s observation, except for SiD| introduced in the previous two articles, these two
schemes have rarely achieved results that reduce the number of generation steps to a single
step. Although SiD can achieve single-step generation, it requires additional distillation costs
and employs a GAN-like alternating training process during distillation, which always feels
somewhat lacking.

The work to be introduced in this article is "One Step Diffusion via Shortcut Models". Its
breakthrough idea is to treat the generation step size as a conditional input to the diffusion
model and then add an intuitive regularization term to the training objective. This allows for
the direct and stable training of a model capable of single-step generation, making it a simple
yet effective classic work.

1 ODE Diffusion

The conclusions of the original paper are based on ODE-style diffusion models. Regarding the
theoretical foundation of ODE-style diffusion, we have introduced it multiple times in parts (6),
(12), (14), (15), and (17)| of this series. One of the simplest ways to understand it is from the
ReFlow perspective in [(17), which we will briefly repeat here.

Assume g ~ po(xp) is a random noise sampled from a prior distribution, and 1 ~ p1(x1)
is a real sample sampled from the target distribution (Note: In previous articles, z7 was usually
the noise and x(was the target sample; here, they are reversed for convenience). ReFlow allows
us to specify any motion trajectory from xg to ;. The simplest trajectory is naturally a straight
line:

xy = (1 —t)xg + tay (1)

By taking the derivative on both sides, we can obtain the ODE (Ordinary Differential Equation)
it satisfies:

ﬁ:a’:l—wo (2)

This ODE is simple, but in practice, it is useless because we want to generate x; from x(via
the ODE, yet the above ODE explicitly depends on x1. To solve this problem, a simple idea is
to "learn a function of x; to approximate @1 — xg." After learning, we use it to replace x; — x,
i.e.,

0" = arg;nin Eaompo(z0) 1 ~ps (1) {va(wt,t) — (@1 — mO)HQ] (3)
and p p
Trem—m = = ve (@) (4)

https://kexue.fm/archives/10085
https://papers.cool/arxiv/2410.12557
https://kexue.fm/archives/9228
https://kexue.fm/archives/9280
https://kexue.fm/archives/9370
https://kexue.fm/archives/9379
https://kexue.fm/archives/9497
https://kexue.fm/archives/9497

This is ReFlow. Of course, there is a missing theoretical proof here—that the ODE obtained by
fitting vg(x¢, t) through squared error indeed generates the desired distribution. For this part,
readers can refer to |"Generative Diffusion Models (17): General Steps for Constructing ODEs
(Part 2)".

2 Step Size Self-consistency

Suppose we already have vg(x¢,t). Then, by solving the differential equation % = vg(xy, t),

we can achieve the transformation from xg to 1. The key point is "differential equation," but
in reality, we cannot truly compute a differential equation numerically; we can only compute a
"difference equation":

Tire — Ty = Vg(xy, t)e (5)

This difference equation is an "Euler approximation" of the original ODE. The degree of ap-
proximation depends on the step size e. As € — 0, it becomes exactly equal to the original
ODE; in other words, the smaller the step size, the more accurate it is. However, the number
of generation steps equals 1/¢, and we want the number of generation steps to be as small as
possible. This means we cannot use a step size that is too small; ideally, € could be equal to 1,
so that 1 = @y + vg(xo, 0), completing the generation in one step.

The problem is that if we directly substitute a large step size into the above equation, the
resulting x; will inevitably deviate significantly from the exact solution. This is where the
clever idea of the original paper (hereafter referred to as the "Shortcut Model") comes in: it
posits that the model vg(x¢,t) should not only be a function of @; and ¢, but also a function of
the step size e. In this way, the difference equation can adapt itself to the step size:

Tire — Ty = Vg(x4, L, €)€ (6)

The objective trains the exact ODE model, so it trains the model for € = 0:
L1 = Eagp(oo) erm e | 3 I00(@1,1,0) — (@1 — 20)| 7)
How is the part for ¢ > 0 trained? Our goal is to have as few generation steps as possi-

ble, which is equivalent to saying we hope that "taking 1 step with double the step size equals
taking 2 steps with a single step size":

Ty + vg(xy, t, 2€)2e = + vg(Jt+e€)e (8)

That is, vg(xy, t,2¢) = [vg(xy,t, €) + vol ,t 4+ €,€)]/2. To achieve this goal, we supplement
a self-consistency loss function:

‘CQ = EmONPO(wo)vmlf\’Pl(ml) [H’U@(:Bt, t? 26) - [’Ug(il?t, t’ 6) + ’Ug(7t + €, 6)]/2H2} (9)

The sum of £ and L5 constitutes the loss function of the Shortcut Model.

(Note: Some readers have pointed out that the earlier "Consistency Trajectory Models:
Learning Probability Flow ODE Trajectory of Diffusion" proposed using the start and end
points of discretized time as conditional inputs. Once the start and end points are specified,
the step size is actually determined, so Shortcut’s approach of using step size as input is not
entirely innovative.)

https://kexue.fm/archives/9497
https://kexue.fm/archives/9497
https://papers.cool/arxiv/2310.02279
https://papers.cool/arxiv/2310.02279

3 Model Details

The above covers almost all the theoretical content of the Shortcut Model, which is very elegant
and concise. However, moving from theory to experiment requires some details, such as how
the step size € is integrated into the model.

First, when training L5, Shortcut does not sample e uniformly from [0, 1]. Instead, it sets
a minimum step size of 277 and then doubles them up to 1. Thus, all non-zero step sizes are
limited to 8 values: {277,276,275 274 273 272 91 1}, [, is trained by uniformly sampling
from the first 7 values. Consequently, there are only 9 possible values for € (including 0). The
Shortcut model directly inputs € as an Embedding, which is added to the Embedding of ¢.

Secondly, note that the computational cost of L is higher than that of £; because the term
V9(&ite, t + €, €) requires two forward passes. Therefore, the paper’s approach is to use 3/4 of
the samples in each batch to calculate £; and the remaining 1/4 for £o. This operation not
only saves computation but also adjusts the weights of £1 and L. Since L5 is easier to train
than L1, it can afford to have fewer training samples.

Additionally, in practice, the paper fine-tunes Lo by adding a stop gradient operator:

Ly = Emofvpo(mo),mNpl(m) [va(wt’ t 26) - ’Ug(:l:t, i 6) + v9(U+ e, 6) /2H2} (10)

Why do this? According to the author’s|reply) this is a common practice in self-guided learning.
The part under the stop gradient belongs to the target and should not have gradients, similar
to unsupervised learning schemes like BY OL|and SimSiam. However, in the author’s view, the
greatest value of this operation is saving training costs, as the term vg (&4, t+¢, €) involves two
forward passes; if backpropagation were required through it, the computation would double.

4 Experimental Results

Now let’s look at the experimental results of the Shortcut Model. It appears to be the best-
performing single-stage trained diffusion model for single-step generation currently available:

CelebAHQ-256 (unconditioned) | Imagenet-256 (class conditioned)
128-Step 4-Step 1-Step 128-Step 4-Step 1-Step
Two phase training
Progressive Distillation | (302.9) (251.3) 14.8 (201.9) (1425) 35.6
Consistency Distillation 59.5 39.6 38.2 132.8 98.01 136.5
Reflow 16.1 184 232 16.9 328 44.8
End-to-end (single training run)
Diffusion 23.0 (1234) (1322) 39.7 (464.5) (467.2)
Flow Matching 73 (63.3) (280.5) 17.3 (108.2) (324.8)
Consistency Training 53.7 19.0 332 42.8 43.0 69.7
Live Reflow (ours) 6.3 27.2 433 46.3 95.8 58.1
Shortcut Models (ours) 6.9 13.8 20.5 15.5 28.3 40.3

Table 1: Comparison of training objectives under equivalent architecture (DiT-B) and com-
pute. FID-50k scores (lower is better) are shown over 128, 4, and 1-step denoising. Shortcut models
provide high-quality samples under any inference budget, within a single training run. Compared
to diffusion and flow-matching, shortcut models drastically reduce needed sampling steps. Com-
pared to distillation approaches, short models simplify the training pipeline and provides flexibility
to choose inference budget after training. Parentheses represent evaluation under conditions that the
objective is not intended to support.

Figure 1: Quality evaluation of various diffusion models

Here is the actual sampling effect:

However, a close observation of the single-step generated samples reveals noticeable flaws.
While the Shortcut Model has made significant progress compared to previous single-stage
training schemes, there is still clear room for improvement.

The authors have open-sourced the code for the Shortcut Model. The GitHub link is:

https://openreview.net/forum?id=OlzB6LnXcS¬eId=k4If3csXST
https://papers.cool/arxiv/2006.07733
https://papers.cool/arxiv/2011.10566

Flow Matching Shortcut Models (ours)

Figure 1: Generations of flow-matching models and shortcut models for different inference
budgets. Shortcut models generate high-quality images across a wide range of inference budgets,
including using a single forward pass, drastically reducing sampling time by up to 128x compared
to diffusion and flow-matching models. In contrast, diffusion and flow-matching models rapidly
deteriorate when queried in the few-step setting. The same starting noise used within each column
and two models are trained on CelebA-HQ and Imagenet-256 (class conditioned).

Figure 2: Comparison of actual sampling effects between Flow Matching and Shortcut Model

https://github.com/kvfrans/shortcut-models

Incidentally, the Shortcut Model was submitted to ICLR 2025 and received unanimous praise
from reviewers (all scores of 8).

5 Extended Thinking

Seeing the Shortcut Model, what related works come to mind? One that might be unexpected
is AMED, which we introduced in "Generative Diffusion Models (Part 21): Accelerating ODE
Sampling with the Mean Value Theorem'.

The underlying ideas of the Shortcut Model and AMED are connected. Both recognize
that relying solely on complex high-order solvers to reduce the NFE (Number of Function
Evaluations) to single digits is already difficult, let alone achieving single-step generation. Thus,
they agree that what needs to change is not the solver, but the model itself. How should it
change? AMED thought of the "Mean Value Theorem": by integrating both sides of the ODE,
we have the exact:

t+e
Tiye — Tt = / vo(xr, 7)dT (11)
t
By analogy with the Mean Value Theorem for Integrals, we can find an s € [t,t + €] such that:
1 t+e
*/ vg(xr, 7)dT = vo(T5), 5) (12)
€ Jt

Thus we get:
Tiie — Ty = V(s S)e (13)

Of course, the Mean Value Theorem for Integrals strictly applies only to scalar functions, not
necessarily to vector functions, hence the "analogy." The problem is that the value of s is
unknown, so AMED’s approach is to use a very small model (with negligible computation) to
predict s.

AMED is a post-hoc correction method based on existing diffusion models, so its effectiveness
depends on how well the Mean Value Theorem holds for the vg(x¢,t) model, which involves
some "luck." Furthermore, AMED needs to use an Euler step to estimate x; first, so its minimum
NFE is 2, and it cannot achieve single-step generation. In contrast, the Shortcut Model is more
"aggressive"; it directly treats the step size as a conditional input and uses the acceleration
condition as a loss function. This not only avoids the feasibility discussion of the "Mean
Value Theorem" approximation but also allows the minimum NFE to be reduced to 1.

https://github.com/kvfrans/shortcut-models
https://kexue.fm/archives/9881
https://kexue.fm/archives/9881
https://en.wikipedia.org/wiki/Mean_value_theorem#Mean_value_theorems_for_definite_integrals

More cleverly, upon closer reflection, we find commonalities in their approaches. As men-
tioned, Shortcut directly converts € into an Embedding and adds it to the Embedding of t.
Isn’t this equivalent to modifying ¢, just as AMED does? The difference is that AMED directly
modifies the numerical value of ¢, while Shortcut modifies the Embedding of ¢.

6 Summary

This article introduced a new work on diffusion models that achieves single-step generation
through single-stage training. Its breakthrough idea is to treat the step size as a conditional
input to the diffusion model, paired with an intuitive regularization term. This allows a single-
step generation model to be obtained through a single stage of training.

https://kexue.fm/archives/10617
https://kexue.fm/archives/6508

	ODE Diffusion
	Step Size Self-consistency
	Model Details
	Experimental Results
	Extended Thinking
	Summary

