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From the article “A Brief History of Linear Attention: From Imitation, Innovation to Feed-
back”, we can observe that DeltaNet and subsequent linear Attention models are basically
associated with the inverse matrix (I + KK ' ® M~)~!'. This article specifically explores the
calculation of the inverse of such triangular matrices characterized by a “diagonal 4 low-rank”
structure.

1 Basic Results

We define the problem generally as follows:

Given matrices Q, K € R™ ¢ and a diagonal matrix A € R™*" satisfying n > d,

define
T=A+QK' oM~ (1)
where M~ = M — I, and the matrix M is defined as
L, 12y
M, ; = {O . (2)
y 1<)

The goal is to find the inverse matrix 7! and prove that its complexity is O(n?).

First, if there were no lower triangular constraint ©®M ~, the problem could be directly
solved by the Woodbury matrix identity:

A+QK) 1=A"T1-AIQU+K'A'IQ)'K'A™! (3)

It is easy to verify that the computational complexity of the right-hand side is O(n?). However,
after adding @M ~, T itself no longer possesses the “diagonal + low-rank” structure, so it
cannot be solved directly by this identity. Given the lower triangular characteristic, a basic
approach is recursion, as we have the block matrix identity:

—1 1
[g g] :[—BﬁC'A_I 30—1] (4)

This allows us to transform T into a recursive form (convention: in the absence of parentheses,
slicing has the highest precedence):

i . )

T—l ' — l 1 ,:l} 1 _1
L _T[l:l+1,z:l+1]T[l:l+1,:l]T[:z,:l} T[l:l+1,l:l+1]
The main calculation here is T[l:l+1,:l]T[_;zl;z]v which is a multiplication of a 1 x [ and an [ x [

matrix. The complexity is O(I?), meaning the complexity of each iteration grows quadratically,
resulting in a total complexity of O(n?).


https://kexue.fm/archives/11033
https://kexue.fm/archives/11033
https://en.wikipedia.org/wiki/Woodbury_matrix_identity

2 Low-Rank Structure

Of course, this is because we haven’t yet utilized the low-rank structure of T' (before the © M ~
operation). By utilizing it, we get T4 = Q[l:l+1]K[Tz]' Substituting this into the above
equation yields:

7:”

T, :[ 1 T 1 1
b L] _T[z:z+1,l:l+1]Q[l:l+1]K[:l]T[:z,:l} T[l:l+1,l:l+1}

Ui . ©)

Note that K [Tl]T[_;ll;z] e R4, If we can use this as a recursive variable, the complexity of each

iteration will only be O(l), and the total complexity can be successfully reduced to O(n?).
Following this logic, we have:

K/ .T:

1 T T
CI+1) [1,:041] — [K[:l] K[z:z+1]}

—1
1 T[:l’:l] T 1 1 0 ]
_T[z:l+1,l:l+1]Q[l:l+1]K[:l]T[:z,:l] T[l:l+1,l:l+1]

T -1 -1 T -1 -1
= {K[:I]T[:l,:l] 0] +K[I;l+1} {_T[l:l—&-l,l:l—i-l}Q[lil-i-l}K[:l}T[:l,:l] T[l:l+1,l:l+1ﬂ

which is actually (T_l)[l:l+1,:l+1]
(7)
As we can see, this recursive process does not involve O(I2) operations. Therefore, the approach
is feasible; we only need to introduce a new variable to cache K [TZ]T[_:I%:Z]' If we replace [ + 1
with [ + ¢, we can obtain the recursion in a chunked format.
The test code is as follows:

import numpy as np

, d, ¢ = 1000, 100, 200
np.random.randn(n, d) / d**0.5

= np.random.randn(n, d) / d**0.5
np.tril(Q @ K.T, -1) + np.eye(n)

H X o B
(|

Y, Z = np.zeros((n, n)), np.zeros((d, n))

for 1 in range(0, n, c):
Y[1:1 + ¢, 1:1 + ¢c] = np.linalg.inv(T[1:1 + c, 1:1 + c])
Y[(1:1 + ¢, :1] = - Y[1:1 + ¢, 1:1 + c] @ Q[1:1 + c¢] @ Z[:, :1]
Z[:, :1 + c] += K[1:1 + c].T @ Y[1:1 + ¢, :1 + c]

print(np.allclose(Y @ T, np.eye(n)))

3 Multiplication Calculation
Based on the same idea, we can also prove:

For any matrix V' € R™ 9, calculating T~V only requires O(n) complexity.




The proof only requires a slight modification of the previous process. First, we have:

(T_IV)[:H—I] = T[TZ%H,:Z«H] V[:l+1]

- ) T[Tlil] o ) 0 ] [ Vi ]
__T[z:l+1,l:z+1]Q[l:l+1]K[:l]T[:z,:l} T[l:l+1,l:l+1] Vit
-1 8
1 TV 1 ] (®)
_*T[z:l+1,l;z+1]Q[l:z+1]K[:l]T[:z,:l}V[:l] + T[z:l+1,l:z+1]v[l:l+1]

[ ) (T7'V)y oo
Ty (Vi — Quary Ky (T V)

Then:
KTV = [Kly Ky

(TI_IV)[:z]
(T V)[4 ©
- K[Tl] (T™'V)py + K[I:l+1] (T~'V) 1)

Therefore, by only caching K [T:l] (T*1V)[:l] € R¥? the computational complexity of each step
becomes independent of [, so the total complexity is O(n). Similarly, replacing { + 1 with [ + ¢
yields the chunked format.

The test code is as follows:

import numpy as np

, d, ¢ = 1000, 100, 200
= np.random.randn(n, d) / d**0.5
= np.random.randn(n, d) / d**0.5
= np.random.randn(n, d) / d**0.5
= np.tril(Q @ K.T, -1) + np.eye(n)

H< x"oB

Y, Z = np.zeros((n, d)), np.zeros((d, d))

for 1 in range(0, n, c):
X = np.linalg.inv(T[1:1 + c, 1:1 + c])
Y[1:1 + c¢c] = X @ (V[1:1 + c] - Q[1:1 + c] @ Z)
Z += K[1:1 + c].T @ Y[1:1 + c]

5 | print (np.allclose(T @ Y, V))

4 Summary

This article discussed the inversion problem of triangular matrices with “diagonal + low-rank”
characteristics. Such matrices commonly appear in modern linear Attention models.
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