
Efficient Inversion Method for “Diagonal + Low-Rank”
Triangular Matrices

Jianlin Su

July 1, 2025

From the article “A Brief History of Linear Attention: From Imitation, Innovation to Feed-
back”, we can observe that DeltaNet and subsequent linear Attention models are basically
associated with the inverse matrix (I + KK⊤ ⊙ M−)−1. This article specifically explores the
calculation of the inverse of such triangular matrices characterized by a “diagonal + low-rank”
structure.

1 Basic Results
We define the problem generally as follows:

Given matrices Q, K ∈ Rn×d and a diagonal matrix Λ ∈ Rn×n, satisfying n ≫ d,
define

T = Λ + QK⊤ ⊙ M− (1)
where M− = M − I, and the matrix M is defined as

Mi,j =
{

1, i ≥ j

0, i < j
(2)

The goal is to find the inverse matrix T −1 and prove that its complexity is O(n2).

First, if there were no lower triangular constraint ⊙M−, the problem could be directly
solved by the Woodbury matrix identity:

(Λ + QK⊤)−1 = Λ−1 − Λ−1Q(I + K⊤Λ−1Q)−1K⊤Λ−1 (3)

It is easy to verify that the computational complexity of the right-hand side is O(n2). However,
after adding ⊙M−, T itself no longer possesses the “diagonal + low-rank” structure, so it
cannot be solved directly by this identity. Given the lower triangular characteristic, a basic
approach is recursion, as we have the block matrix identity:[

A 0
C B

]−1

=
[

A−1 0
−B−1CA−1 B−1

]
(4)

This allows us to transform T −1 into a recursive form (convention: in the absence of parentheses,
slicing has the highest precedence):

T −1
[:l+1,:l+1] =

[
T −1

[:l,:l] 0
−T −1

[l:l+1,l:l+1]T [l:l+1,:l]T
−1
[:l,:l] T −1

[l:l+1,l:l+1]

]
(5)

The main calculation here is T [l:l+1,:l]T
−1
[:l,:l], which is a multiplication of a 1 × l and an l × l

matrix. The complexity is O(l2), meaning the complexity of each iteration grows quadratically,
resulting in a total complexity of O(n3).

1

https://kexue.fm/archives/11033
https://kexue.fm/archives/11033
https://en.wikipedia.org/wiki/Woodbury_matrix_identity

2 Low-Rank Structure
Of course, this is because we haven’t yet utilized the low-rank structure of T (before the ⊙M−

operation). By utilizing it, we get T [l:l+1,:l] = Q[l:l+1]K
⊤
[:l]. Substituting this into the above

equation yields:

T −1
[:l+1,:l+1] =

[
T −1

[:l,:l] 0
−T −1

[l:l+1,l:l+1]Q[l:l+1]K
⊤
[:l]T

−1
[:l,:l] T −1

[l:l+1,l:l+1]

]
(6)

Note that K⊤
[:l]T

−1
[:l,:l] ∈ Rd×l. If we can use this as a recursive variable, the complexity of each

iteration will only be O(l), and the total complexity can be successfully reduced to O(n2).
Following this logic, we have:

K⊤
[:l+1]T

−1
[:l+1,:l+1] =

[
K⊤

[:l] K⊤
[l:l+1]

] [
T −1

[:l,:l] 0
−T −1

[l:l+1,l:l+1]Q[l:l+1]K
⊤
[:l]T

−1
[:l,:l] T −1

[l:l+1,l:l+1]

]

=
[
K⊤

[:l]T
−1
[:l,:l] 0

]
+ K⊤

[l:l+1]

[
−T −1

[l:l+1,l:l+1]Q[l:l+1]K
⊤
[:l]T

−1
[:l,:l] T −1

[l:l+1,l:l+1]

]
︸ ︷︷ ︸

which is actually (T −1)[l:l+1,:l+1]

(7)
As we can see, this recursive process does not involve O(l2) operations. Therefore, the approach
is feasible; we only need to introduce a new variable to cache K⊤

[:l]T
−1
[:l,:l]. If we replace l + 1

with l + c, we can obtain the recursion in a chunked format.
The test code is as follows:

1 import numpy as np
2

3 n, d, c = 1000 , 100, 200
4 Q = np. random .randn(n, d) / d**0.5
5 K = np. random .randn(n, d) / d**0.5
6 T = np.tril(Q @ K.T, -1) + np.eye(n)
7

8 Y, Z = np.zeros ((n, n)), np.zeros ((d, n))
9 for l in range (0, n, c):

10 Y[l:l + c, l:l + c] = np. linalg .inv(T[l:l + c, l:l + c])
11 Y[l:l + c, :l] = - Y[l:l + c, l:l + c] @ Q[l:l + c] @ Z[:, :l]
12 Z[:, :l + c] += K[l:l + c].T @ Y[l:l + c, :l + c]
13

14 print(np. allclose (Y @ T, np.eye(n)))

3 Multiplication Calculation
Based on the same idea, we can also prove:

For any matrix V ∈ Rn×d, calculating T −1V only requires O(n) complexity.

2

The proof only requires a slight modification of the previous process. First, we have:

(T −1V)[:l+1] = T −1
[:l+1,:l+1]V [:l+1]

=
[

T −1
[:l,:l] 0

−T −1
[l:l+1,l:l+1]Q[l:l+1]K

⊤
[:l]T

−1
[:l,:l] T −1

[l:l+1,l:l+1]

] [
V [:l]

V [l:l+1]

]

=
[

T −1
[:l,:l]V [:l]

−T −1
[l:l+1,l:l+1]Q[l:l+1]K

⊤
[:l]T

−1
[:l,:l]V [:l] + T −1

[l:l+1,l:l+1]V [l:l+1]

]

=
[

(T −1V)[:l]
T −1

[l:l+1,l:l+1](V [l:l+1] − Q[l:l+1]K
⊤
[:l](T

−1V)[:l])

]
(8)

Then:
K⊤

[:l+1](T
−1V)[:l+1] =

[
K⊤

[:l] K⊤
[l:l+1]

] [
(T −1V)[:l]

(T −1V)[l:l+1]

]

= K⊤
[:l](T

−1V)[:l] + K⊤
[l:l+1](T

−1V)[l:l+1]

(9)

Therefore, by only caching K⊤
[:l](T

−1V)[:l] ∈ Rd×d, the computational complexity of each step
becomes independent of l, so the total complexity is O(n). Similarly, replacing l + 1 with l + c
yields the chunked format.

The test code is as follows:
1 import numpy as np
2

3 n, d, c = 1000 , 100, 200
4 Q = np. random .randn(n, d) / d**0.5
5 K = np. random .randn(n, d) / d**0.5
6 V = np. random .randn(n, d) / d**0.5
7 T = np.tril(Q @ K.T, -1) + np.eye(n)
8

9 Y, Z = np.zeros ((n, d)), np.zeros ((d, d))
10 for l in range (0, n, c):
11 X = np. linalg .inv(T[l:l + c, l:l + c])
12 Y[l:l + c] = X @ (V[l:l + c] - Q[l:l + c] @ Z)
13 Z += K[l:l + c].T @ Y[l:l + c]
14

15 print(np. allclose (T @ Y, V))

4 Summary
This article discussed the inversion problem of triangular matrices with “diagonal + low-rank”
characteristics. Such matrices commonly appear in modern linear Attention models.

When reprinting, please include the original address of this article: https://kexue.fm/archives/11072
For more detailed reprinting matters, please refer to: “Scientific Space FAQ”

3

https://kexue.fm/archives/11072
https://kexue.fm/archives/6508

	Basic Results
	Low-Rank Structure
	Multiplication Calculation
	Summary

