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In the previous two articles, "Rethinking Learning Rate and Batch Size (Part 1): Status Quo"
and "Rethinking Learning Rate and Batch Size (Part 2): Mean Field", we primarily proposed
the mean-field method to simplify calculations related to learning rate and batch size. At that
time, the optimizers we analyzed were SGD, SignSGD, and SoftSignSGD, and our main goal
was simplification; essentially, no new conclusions were drawn.

However, in today’s "feast of optimizers," how could Muon be left out? Therefore, in this
article, we will attempt to calculate the relevant conclusions for Muon to see if the relationship
between its learning rate and batch size exhibits any new patterns.

1 Basic Notation
As is well known, the main characteristic of Muon is its non-element-wise update rule. Con-
sequently, the element-wise calculation methods used previously in "How Should the Learning
Rate Change as the Batch Size Increases?" and "How Does Adam’s Epsilon Affect the Scal-
ing Law of Learning Rate?" are completely inapplicable. Fortunately, the mean-field method
introduced in the previous article remains effective, requiring only a slight adjustment of details.

First, let us introduce some notation. Let the loss function be L(W ), where W ∈ Rn×m is
a matrix (assume n ≥ m). Let G be its gradient. The gradient of a single sample is denoted
as G̃, its mean is G, and its variance is σ2. When the batch size is B, the gradient is denoted
as G̃B; its mean remains G, but its variance becomes σ2/B. Note that the variance here is
treated as a scalar σ2, rather than considering the full covariance matrix as done previously.

The core reason for this simplification is that the random variable itself is already a matrix, so
its corresponding covariance matrix would actually be a 4th-order tensor, which is cumbersome
to discuss. Does simplifying it to a single scalar significantly sacrifice accuracy? In fact, it does
not. Although we considered the full covariance matrix Σ in the previous two articles, a closer
look reveals that the final results only depend on tr(Σ), which is equivalent to simplifying it to
a scalar from the beginning.

2 Hessian Matrix
Similarly, let the update amount be −ηΦ̃B. Consider the second-order expansion of the loss
function:

L(W − ηΦ̃B) ≈ L(W ) − η tr(Φ̃⊤
BG) + 1

2η2 tr(Φ̃⊤
BHΦ̃B) (1)

The first two terms should be straightforward; the third term is more difficult to understand.
Like the covariance matrix, the Hessian matrix H here is a 4th-order tensor, which is complex
to interpret.

The simplest entry point here is the linear operator perspective, i.e., treating H as a linear
operator where both input and output are matrices. We do not need to know what H looks
like or how H operates with Φ̃B; we only need to know that HΦ̃B is linear with respect to
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Φ̃B. In this way, the objects we handle remain matrices, avoiding additional cognitive load.
Any linear operator that satisfies the conditions can serve as an approximation of the Hessian
matrix, without needing to write out the specific high-order tensor form.

The protagonist of this article is Muon. we take Φ̃B = msign(G̃B) as its approximation
for calculation. By definition, we write msign(G̃B) = G̃B(G̃⊤

BG̃B)−1/2. From a Newton’s
method perspective, this is equivalent to assuming H−1X = ηmaxX(G⊤G)−1/2, which implies
HX = η−1

maxX(G⊤G)1/2. This will be used in subsequent calculations.

3 Calculating Expectation
Taking the expectation of both sides of Eq. (1), we get:

E[L(W − ηΦ̃B)] ≈ L(W ) − η tr(E[Φ̃B]⊤G) + 1
2η2E[tr(Φ̃⊤

BHΦ̃B)] (2)

First, calculate E[Φ̃B]:

E[Φ̃B] = E[G̃B(G̃⊤
BG̃B)−1/2] ≈ E[G̃B](E[G̃⊤

BG̃B])−1/2 = G(E[G̃⊤
BG̃B])−1/2 (3)

We write out E[G̃⊤
BG̃B] by components and assume independence between different components:

E[G̃⊤
BG̃B]i,j = E

[
n∑

k=1
(G̃B)k,i(G̃B)k,j

]
=


E
[

n∑
k=1

(G̃B)2
k,i

]
=
(

n∑
k=1

G2
k,i

)
+ nσ2/B, (i = j)

n∑
k=1

E[(G̃B)k,i]E[(G̃B)k,j ] =
n∑

k=1
Gk,iGk,j , (i ̸= j)

(4)
Combining these, we have E[G̃⊤

BG̃B] = G⊤G + (nσ2/B)I, so:

E[Φ̃B] ≈ G(G⊤G + (nσ2/B)I)−1/2 = msign(G)(I + (nσ2/B)(G⊤G)−1)−1/2 (5)

To further simplify the dependency on B, we approximate G⊤G with tr(G⊤G)I/m, which
means keeping only the diagonal part of G⊤G and then replacing the diagonal elements with
their average. Thus, we obtain:

E[Φ̃B] ≈ msign(G)(1 + Bsimple/B)−1/2 (6)

where Bsimple = mnσ2/ tr(G⊤G) = mnσ2/∥G∥F . This is actually the same as treating G as a
vector and calculating Bsimple as in the previous two articles. The form of the above equation
is identical to that of SignSGD. From this, we can guess that Muon will not present many new
results regarding the relationship between learning rate and batch size.

4 Same Patterns
As for E[tr(Φ̃⊤

BHΦ̃B)], we only calculate the assumption corresponding to Muon derived earlier,
namely HX = η−1

maxX(G⊤G)1/2. Then:

tr(Φ̃⊤
BHΦ̃B) = η−1

max tr(Φ̃⊤
BΦ̃B(G⊤G)1/2) (7)

Note that Φ̃B is the result of msign, so it must be an orthogonal matrix (full rank), which means
Φ̃⊤

BΦ̃B = I. In this case, tr(Φ̃⊤
BHΦ̃B) is a fixed constant η−1

max tr((G⊤G)1/2) = η−1
max msign(G)⊤G.

Thus, we can obtain:

η∗ ≈ tr(E[Φ̃B]⊤G)
E[tr(Φ̃⊤

BHΦ̃B)]
≈ ηmax√

1 + Bsimple/B
(8)
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As expected, the form is exactly the same as the result for SignSGD, with no new patterns.
Actually, upon reflection, this is reasonable. SignSGD directly applies sign to the gradient,

while Muon’s msign applies sign to the singular values. Intuitively, it is equivalent to applying
sign in a different coordinate system. It brings a new matrix update rule, but the learning rate
η∗ and batch size B are just scalars. Given that the core of both is sign, it is highly likely that
the asymptotic relationship of these scalars will not undergo significant changes.

Of course, we have only calculated for a specific H. If a more general H is considered,
it is possible that, like SignSGD, a "Surge" phenomenon might occur where "as the batch size
increases, the learning rate should instead decrease." However, as mentioned in the "Reflections
on Causes" section of the previous article, if a Surge phenomenon is truly observed, it might be
more appropriate to change the optimizer rather than correcting the relationship between η∗

and B.

5 Summary
In this article, we attempted a simple analysis of Muon using the mean-field approximation.
The conclusion is that its relationship between learning rate and batch size is consistent with
SignSGD, with no new patterns discovered.
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