
Rethinking Learning Rate and Batch Size (Part IV): EMA

Jianlin Su

September 22, 2025

In Rethinking Learning Rate and Batch Size (Part II): Mean Field, we mentioned that one
reason for focusing on SignSGD is that we typically use it as a theoretical approximation for
Adam. This is a common simplification strategy used in the theoretical analysis of Adam.
Besides analyzing learning rate scenarios, we have also used this simplification in posts such as
"Can LoRA Gain More by Configuring Different Learning Rates?" and "A First Look at MuP:
Hyperparameter Scaling Laws Across Model Scales".

However, is SignSGD truly a good approximation of Adam? One obvious difference is that
the Update RMS of SignSGD is always 1, whereas this is not the case for Adam. I have found
that the core reason for this discrepancy is momentum, which is ubiquitous in optimizers like
Adam, Lion, and Muon. Therefore, in this article, we will examine the impact of momentum—or
more broadly, EMA (Exponential Moving Average).

1 Problem Analysis
From the perspective of Adam, SignSGD corresponds to the special case where β1 = β2 = 0,
or to the first update step of Adam (regardless of the values of β1, β2). Therefore, we believe it
must share some commonalities with Adam and can capture certain general patterns.

However, there are also significant differences between them. A typical example is the dif-
ference in Update RMS: SignSGD is always 1, but Adam’s is often significantly less than 1.
Furthermore, Adam appears closer to SGD; it seems to be an intermediate version between
SignSGD and SGD. Initially, I thought this difference was caused by the ϵ in Adam’s denomi-
nator, so in "How Does Adam’s Epsilon Affect the Learning Rate Scaling Law?", I specifically
calculated the SoftSignSGD with ϵ.

Later, in "Why is Adam’s Update RMS 0.2?", we estimated Adam’s Update RMS from both
simulation and theoretical perspectives. In fact, the estimate from the mean-field approximation
is

√
1−β1
1+β1

, and we verified that it aligns well with both simulation results and actual experiments.
Since this result explicitly depends on β1, it clearly points our thinking toward momentum.

This led to the following analysis. In summary, we can confirm that the role of ϵ is indeed
secondary. The true protagonist is momentum—the "sliding average" of the gradient—which is
precisely the subject of this article: "EMA (Exponential Moving Average)."

2 Gradient Descent
To analyze the variables introduced by EMA, we start with SGDM, which is SGD with mo-
mentum. In practice, we rarely use SGD without momentum:

mt = β1mt−1 + (1 − β1)gt

wt = wt−1 − ηtmt

(1)

In actual use, gt is replaced by g̃B,t, which is a random variable with mean gt and covariance
matrix Σt/B. These basic settings are the same as in Rethinking Learning Rate and Batch Size

1

https://kexue.fm/archives/11280
https://kexue.fm/archives/10001
https://kexue.fm/archives/10770
https://kexue.fm/archives/10770
https://kexue.fm/archives/10563
https://kexue.fm/archives/11267
https://kexue.fm/archives/11260
https://kexue.fm/archives/11260

(Part I): Current Status. The noise here is caused by random sampling of different batches, so
we can reasonably assume that g̃B,t are independent across different t.

Our task is to calculate:
η∗ ≈ E[φ̃B]⊤g

tr(E[φ̃Bφ̃⊤
B]H)

(2)

The relevant derivations have been given in previous articles and will not be repeated here. For
SGDM, φ̃B = mt, which can be expanded as:

mt = (1 − β1)
t∑

s=1
βt−s

1 g̃B,s (3)

3 Scaling the Batch Size
Now we can calculate:

E[mt] = (1 − β1)
t∑

s=1
βt−s

1 E[g̃B,s] = (1 − β1)
t∑

s=1
βt−s

1 gs (4)

We further assume that once the model training is "on track," the gradient changes slowly.
Thus, we can approximate gs with the current gradient gt, yielding:

E[mt] = (1 − β1)
t∑

s=1
βt−s

1 gt = (1 − βt
1)gt ≈ gt (t → ∞) (5)

As for E[mtm
⊤
t], we use the identity E[mtm

⊤
t] = E[mt]E[mt]⊤ + Cov[mt, mt], and then use

the additivity of variance to get:

Cov[mt, mt] = (1 − β1)2
t∑

s=1
β

2(t−s)
1 Σs/B (6)

Similarly, assuming the slow variation of the covariance matrix:

Cov[mt] ≈ (1 − β1)2
t∑

s=1
β

2(t−s)
1 Σt/B = (1 − β1)2 1 − β2t

1
1 − β2

1
Σt/B = 1 − β1

1 + β1
Σt/B (t → ∞) (7)

Substituting into Equation (2), we get:

η∗ ≈ ηmax

1 + 1−β1
1+β1

Bnoise/B
, ηmax = g⊤g

g⊤Hg
, Bnoise = tr(ΣH)

g⊤Hg
(8)

From this result, we can see that the introduction of the momentum mechanism is equivalent
to scaling the SGD batch size by a factor of 1+β1

1−β1
. According to my understanding, momen-

tum eliminates gradient noise at a low cost by performing EMA on the gradients along the
optimization trajectory, so this result is consistent with my interpretation of the significance of
momentum.

4 Sign Momentum
Furthermore, we consider SignSGDM, which can be viewed as a special case of Lion. It is
essentially SGDM with an added sign operation:

mt = β1mt−1 + (1 − β1)gt

wt = wt−1 − ηt sign(mt)
(9)

2

https://kexue.fm/archives/11260
https://kexue.fm/archives/11260
https://kexue.fm/archives/9473

In actual training, gt is likewise replaced by g̃B,t. For SignSGDM, φ̃B = sign(mt). According
to the mean-field approximation:

E[φ̃B] = E
[

mt√
m2

t

]
≈ E[mt]√

E[m2
t]

(10)

where vector multiplication defaults to the Hadamard product. We have already calculated
the numerator E[mt] in the previous section. The denominator E[m2

t] is actually equal to
diag(E[mtm

⊤
t]), so we can also substitute the results from the previous section to get:

E[φ̃B] ≈ gt√
g2

t + 1−β1
1+β1

σ2
t /B

= sign(gt)√
1 + 1−β1

1+β1
(σ2

t /g2
t)/B

≈ sign(gt)√
1 + 1−β1

1+β1
Bsimple/B

(11)

where σ2
t = diag(Σt) and Bsimple = tr(Σt)/g⊤

t gt. This formula is equivalent to SignSGD where
B is replaced by 1+β1

1−β1
B. If we further calculate E[φ̃Bφ̃⊤

B], we find the same conclusion. Thus,
as with SGDM, momentum is equivalent to scaling the SignSGD batch size by a factor of 1+β1

1−β1
.

In Rethinking Learning Rate and Batch Size (Part III): Muon, we calculated the learning
rate laws for Muon and found them consistent with SignSGD. Therefore, we can assert that
the role of momentum in Muon is the same as in SignSGDM, roughly equivalent to scaling the
batch size by 1+β1

1−β1
.

5 Double Smoothing
Finally, let’s look at Adam:

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

m̂t = mt/(1 − βt
1)

v̂t = vt/(1 − βt
2)

θt = θt−1 − ηtm̂t/(
√

v̂t + ϵ)

(12)

In actual training, gt is replaced by g̃B,t. We consider the state where training is already "on
track," i.e., t → ∞, so we do not distinguish between mt and m̂t, or vt and v̂t. At the same
time, we focus on the role of EMA, so we set ϵ = 0. For Adam, φ̃B = mt/

√
vt. The difference

from SignSGDM is that the denominator m2
t is replaced by another EMA statistic vt.

From the mean-field approximation:

E[φ̃B] = E
[

mt√
vt

]
≈ E[mt]√

E[vt]
(13)

We have already calculated E[mt], so we only need to calculate E[vt]:

E[vt] = (1 − β2)
t∑

s=1
βt−s

2 E[g̃2
B,s] = (1 − β2)

t∑
s=1

βt−s
2 (g2

s + σ2
s/B) ≈ g2

t + σ2
t /B (14)

As before, the last approximation assumes slow variation of the gradient and variance, and
t → ∞. Thus, we have:

E[φ̃B] ≈ gt√
g2

t + σ2
t /B

≈ sign(gt)√
1 + Bsimple/B

(15)

This result is the same as for SignSGD. Therefore, from the perspective of the first moment
alone, it is reasonable to use SignSGD as an approximation for Adam. However, we also have

3

https://kexue.fm/archives/11285

the second moment E[φ̃Bφ̃⊤
B]. Under the assumption of independent components, we only need

to calculate E[φ̃2
B]:

E[φ̃2
B] = E

[
m2

t

vt

]
≈ E[m2

t]
E[vt]

≈
g2

t + 1−β1
1+β1

σ2
t /B

g2
t + σ2

t /B
(16)

6 Two Special Cases
We observe two special cases. First, when β1 = 0, the numerator and denominator are the
same, and E[φ̃2

B] is a vector of all ones, consistent with SignSGD. Thus, SignSGD is a good
approximation for Adam with β1 = 0 (which is RMSProp). As β1 increases, the approximation
worsens.

When β1 = 1, we have:

E[φ̃2
B] ≈ g2

t

g2
t + σ2

t /B
≈ E[φ̃B]2 (17)

From this, we get E[φ̃Bφ̃⊤
B] ≈ E[φ̃B]E[φ̃B]⊤. Substituting this into Equation (2), we get:

η∗ ≈
∥g∥1

√
1 + Bsimple/B

sign(g)⊤H sign(g) (18)

Note that this is a monotonically decreasing function of B, meaning the optimal learning rate
should decrease as the batch size increases. From this, we can infer that an increase in Adam’s
β1 will accelerate the appearance of the "Surge phenomenon".

This conclusion might seem a bit confusing, but it is easier to understand from another
perspective. The "Surge phenomenon" refers to the situation where the optimal learning rate
decreases as the batch size increases beyond a certain threshold. The results for SGDM and
SignSGDM both indicate that the introduction of momentum is roughly equivalent to scaling
the batch size by 1+β1

1−β1
> 1, which naturally increases the likelihood of exceeding the threshold.

In other words, the conclusion that "as β1 increases, the Surge phenomenon will be more
likely to occur" holds even for SignSGDM. While Adam has some new characteristics compared
to SignSGDM, the fact that "the momentum mechanism is roughly equivalent to scaling the
batch size" remains true, so it is not difficult to understand why the same conclusion arises.

7 General Analysis
Let’s rewrite Equation (16):

E[φ̃2
B] ≈

g2
t + 1−β1

1+β1
σ2

t /B

g2
t + σ2

t /B
= 2β1

1 + β1

g2
t

g2
t + σ2

t /B
+ 1 − β1

1 + β1
≈ 2β1

1 + β1
E[φ̃B]2 + 1 − β1

1 + β1
(19)

From this, we can write:

E[φ̃Bφ̃⊤
B] ≈ E[φ̃B]E[φ̃B]⊤ + 1 − β1

1 + β1
diag

(
1 − E[φ̃B]2

)
(20)

Then:
η∗ ≈

∑
i |gi|

1
β

1−β1
1+β1

∑
i Hi,i + β

(∑
i,j Hi,j sign(gigj) − 1−β1

1+β1

∑
i Hi,i

) (21)

Here, the β without a subscript is equal to (1 + Bsimple/B)−1/2. I apologize if this is confused
with β1, β2; I have followed the notation from the previous two articles. Unlike SignSGD, which
does not exhibit the Surge phenomenon if the Hessian matrix is assumed to be diagonal, the

4

https://kexue.fm/archives/11280#%E5%8F%8D%E5%B8%B8%E7%8E%B0%E8%B1%A1

above formula shows that the Surge phenomenon still occurs even under the diagonal Hessian
assumption:

η∗ ≈
∑

i |gi|(
1
β

1−β1
1+β1

+ β 2β1
1+β1

) ∑
i Hi,i

(22)

By the AM-GM inequality, the above expression reaches its maximum at β∗ =
√

1−β1
2β1

. However,
note that by definition β ∈ (0, 1), so we must check if β∗ ∈ (0, 1), which requires β1 > 1/3.
If this condition is not met, the maximum is still reached at β = 1, and there is no Surge
phenomenon. Conversely, when β1 > 1/3 and β > β∗ (i.e., B > 1−β1

3β1−1Bsimple), the learning rate
should decrease as the batch size increases.

This conclusion can preliminarily explain why Muon can support larger batch sizes. As
seen in Rethinking Learning Rate and Batch Size (Part III): Muon, Muon’s behavior is similar
to SignSGDM. Under certain Hessian structure assumptions, it does not exhibit the Surge
phenomenon, meaning that increasing the batch size can always improve learning efficiency,
although the relative gains become smaller and smaller.

In contrast, Adam, under common settings (such as β1 = 0.9), will exhibit the Surge phe-
nomenon even if the Hessian is assumed to be diagonal. This means that once the batch size
exceeds a certain value, learning efficiency decreases.

8 Summary
This article provides a preliminary analysis of the impact of the optimizer’s EMA mechanism on
the scaling laws of learning rate and batch size. It confirms that the introduction of EMA, partic-
ularly the momentum mechanism, slightly alters the scaling laws. Optimizers like Adam, which
involve double EMA operations, exhibit some new characteristics that differ from SignSGD.

If you reprint this article, please include the original address: https://kexue.fm/archives/11301
For more details on reprinting, please refer to: "Scientific Space FAQ"

5

https://kexue.fm/archives/11285
https://kexue.fm/archives/11301
https://kexue.fm/archives/6508

	Problem Analysis
	Gradient Descent
	Scaling the Batch Size
	Sign Momentum
	Double Smoothing
	Two Special Cases
	General Analysis
	Summary

