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In the article "A Brief History of Linear Attention: From Imitation and Innovation to Feed-
back", we introduced DeltaNet, which brought the Delta Rule into linear attention, becoming
one of its powerful tools and forming the basis for subsequent works such as GDN and KDA.
However, that article focused primarily on the overall idea of DeltaNet and did not delve into
many technical details. In this post, we will discuss one of them: why do DeltaNet and its
subsequent works apply L2 Normalization to Q and K?

Of course, it is not difficult to explain this operation directly from the perspective of eigen-
values, but I always felt it was missing something. A few days ago, I learned a new interpretation
from the paper "Error-Free Linear Attention is a Free Lunch: Exact Solution from Continuous-
Time Dynamics", which I find quite valuable and would like to share.

1 Basic Analysis
The recursive format of DeltaNet is:

St = St−1 − ηt(St−1kt − vt)k⊤
t = St−1(I − ηtktk

⊤
t ) + ηtvtk

⊤
t (1)

From the perspective of TTT (Test-Time Training), this is using the SGD optimizer with a
learning rate ηt to perform online optimization on the loss 1

2∥Sk − v∥2 (where the trainable
parameter is S). We know that optimizers are often sensitive to the learning rate, especially
non-adaptive optimizers like SGD. In DeltaNet, this manifests as additional requirements for
the transition matrix I − ηtktk

⊤
t .

Specifically, since transition matrices at different time steps are multiplied together during
the recursion, to avoid numerical explosion, the transition matrix cannot have eigenvalues with
a magnitude greater than 1. For the matrix I − ηtktk

⊤
t , one of its eigenvalues is 1 − ηt∥kt∥2,

and the rest are all 1 (please prove this). From this, we obtain the constraint:

−1 ≤ 1 − ηt∥kt∥2 ≤ 1 (2)

To satisfy this constraint, a common practice is to apply L2 Normalization to kt and a Sigmoid
function to ηt, so that all eigenvalues fall within (0, 1]. This is the origin of L2 Normalization
for K. As for the L2 Normalization of Q, it is not strictly necessary and is added more for the
sake of symmetry, similar to the case of Short Conv, where applying Short Conv to K is the
most critical part [Reference].

2 Supplementary Notes
As a side note, for a long time, people were accustomed to keeping eigenvalues within (0, 1] and
thus chose to apply Sigmoid to ηt. Later, "Unlocking State-Tracking in Linear RNNs Through
Negative Eigenvalues" pointed out that negative eigenvalues can enhance the state-tracking
capability of DeltaNet. They proposed modifying DeltaNet to:

St = St−1(I − 2ηtktk
⊤
t ) + ηtvtk

⊤
t (3)
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Then, by still applying L2 Normalization to kt and Sigmoid to ηt, the range of eigenvalues for
the transition matrix I −2ηtktk

⊤
t is expanded to (−1, 1]. However, state-tracking is a capability

biased towards specific syntax (such as code). Therefore, if we only train and test on natural
language after this modification, we might not observe significant changes.

Another detail to note is that when ηt = 1, the transition matrix I −2ktk
⊤
t is an orthogonal

matrix. Theoretically, this is fine, but in practice, it fails. Because for efficiency, we usually use
at least BF16 precision in implementation. BF16 has lower precision, which makes it possible
for the eigenvalues of I − 2ktk

⊤
t to fall below -1. Under long-term cumulative multiplication,

there is still a risk of explosion. Therefore, it is necessary to ensure ηt does not get too close to
1.

In fact, the above explanation is already quite complete and not complex. My critique of
it stems mainly from personal aesthetic preference: the method of implementing condition (2)
is not unique. For example, one could introduce a Squash operation similar to Capsule as in
Longhorn. Thus, we cannot naturally derive L2 Normalization; we can only say it is one viable
solution.

3 Continuous Perspective
Next, we introduce the approach from the paper "Error-Free Linear Attention is a Free Lunch:
Exact Solution from Continuous-Time Dynamics". I believe this is also an elegant derivation
path, though this depends on one’s aesthetic. It views Equation (1) as the Euler discretization
of the following differential equation over the interval [t − ηt, t]:

d

dt
St = St (−ktk

⊤
t )︸ ︷︷ ︸

At

+ vtk
⊤
t︸ ︷︷ ︸

Bt

(4)

The paper points out that numerical explosion occurs because the precision of the discretization
format is not high enough. Therefore, it proposes constructing the recursion by directly solving
the differential equation rather than using approximate discretization. Since At and Bt are
constants within the interval [t − ηt, t], solving the recursion from t − ηt to t is equivalent to
solving a linear differential equation with constant coefficients. The general result is:

St = St−ηte
ηtAt + BtA

−1
t (eηtAt − I) (5)

Replacing the notation St−ηt back with St−1 and substituting the expressions for At and Bt,
we simplify to get:

St = St−1

(
I − 1 − e−ηt∥kt∥2

∥kt∥2 ktk
⊤
t

)
+ 1 − e−ηt∥kt∥2

∥kt∥2 vtk
⊤
t (6)

This is the final result we want to derive. The original paper calls this "EFLA (Error-Free Linear
Attention)". It is equivalent to replacing ηt with 1−e−ηt∥kt∥2

∥kt∥2 . Here, ∥kt∥2 naturally appears in
the denominator, and when multiplied by ktk

⊤
t , it manifests exactly as L2 Normalization on

K.

4 Mathematical Details
In the previous section, we quickly introduced the results of EFLA, omitting many mathematical
details. In this section, we supplement some discussions. Due to space limitations, we can only
briefly mention the key points of the derivation.

The core result of the previous section is Equation (5), which is the solution to the differential
equation dSt/dt = StA + B. To avoid confusion, we omit the subscripts for A and B here,
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as they are indeed constants within the solution interval. If B = 0, we can directly write
St = S0etA, where etA is the matrix exponential. When B ̸= 0, we rewrite the equation as
d(St + BA−1)/dt = (St + BA−1)A. Using the solution for the B = 0 case, we get:

St = (S0 + BA−1)etA − BA−1 = S0etA + BA−1(etA − I) (7)

Finally, by changing the starting point to t − ηt, the end point to t, and restoring the subscripts
t for A and B, we obtain Equation (5). Note that the last term involves the inverse matrix
A−1, but in practice, A does not need to be invertible. It is understood by expanding (ex −1)/x
as a power series and substituting x = A. Now focusing again on Equation (5), for DeltaNet,
At = −ktk

⊤
t is a rank-1 matrix, which allows for further simplification:

f(xy⊤) =
∞∑

n=0
an(xy⊤)n = a0I +

∞∑
n=1

an(xy⊤)n = f(0)I + x

( ∞∑
n=1

an(y⊤x)n−1
)

︸ ︷︷ ︸
f(y⊤x)−f(0)

y⊤x

y⊤ (8)

Since y⊤x is a scalar, the essence of the simplification is converting a matrix function into a
scalar function. From this, we obtain:

eηtAt = I − 1 − e−ηt∥kt∥2

∥kt∥2 ktk
⊤
t , BtA

−1
t (eηtAt − I) = 1 − e−ηt∥kt∥2

∥kt∥2 vtk
⊤
t (9)

5 Personal Thinking
This concludes our introduction to EFLA. The original paper also includes experimental results
showing that EFLA has some advantages over the original DeltaNet. However, as seen from
Equation (6), EFLA still maintains the DeltaNet form, so one should not expect "revolutionary"
improvements. Why does EFLA generally perform slightly better? DeltaNet directly discards
the magnitude of K through L2 Normalization, whereas the vtk

⊤
t term in Equation (6) de-

pends on ∥kt∥. Thus, EFLA actually possesses an extra degree of freedom, leading to a higher
theoretical upper bound.

Furthermore, the practice of constructing recursion using exact solutions of differential equa-
tions is not new. We mentioned it when introducing SSMs in "Revisiting SSM (II): Some Legacy
Issues of HiPPO". The key result, Equation (5), already appeared in HiPPO. EFLA specifically
expands the calculation for the special case of DeltaNet to obtain a simplified and usable result.

A more profound question is: what is the benefit of using differential equations as a start-
ing point? It is easy to see that the eigenvalues of the transition matrix in Equation (6) are
automatically within (0, 1]. In other words, the recursive form derived from solving the differen-
tial equation (4) is naturally more stable. Because differential equations come with continuity
constraints, and the matrix −ktk

⊤
t is semi-negative definite, according to differential equation

theory, its solution is stable.
In mathematical modeling, a classic example is the Logistic equation dx/dt = αx − βx2.

Its solution is simple—the Logistic function. However, the corresponding difference equation
xt+1 − xt = αxt − βx2

t can exhibit chaotic behavior (extreme sensitivity to initial conditions)
under certain settings. Therefore, starting from a differential equation can automatically avoid
some abnormal behaviors.

6 Summary
This article discussed the L2 Normalization of DeltaNet, primarily introducing the idea of
reparameterizing DeltaNet from the perspective of differential equations. This can also be
viewed as an explanation for the L2 Normalization of K in DeltaNet.
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Reprinting: Please include the original address of this article: https://kexue.fm/archives/11486
For more details on reprinting, please refer to: "Scientific Space FAQ"
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